98 research outputs found

    High Angular Resolution JHK Imaging of the Centers of the Metal-Poor Globular Clusters NGC5272 (M3), NGC6205 (M13), NGC6287, and NGC6341 (M92)

    Full text link
    The Canada-France-Hawaii Telescope (CFHT) Adaptive Optics Bonnette (AOB) has been used to obtain high angular resolution JHK images of the centers of the metal-poor globular clusters NGC5272 (M3), NGC6205 (M13), NGC6287, and NGC6341 (M92). The color-magnitude diagrams (CMDs) derived from these data include the upper main sequence and most of the red giant branch (RGB), and the cluster sequences agree with published photometric measurements of bright stars in these clusters. The photometric accuracy is limited by PSF variations, which introduce systematic errors of a few hundredths of a magnitude near the AO reference star. The clusters are paired according to metallicity, and the near-infrared CMDs and luminosity functions are used to investigate the relative ages within each pair. The near-infrared CMDs provide the tightest constraints on the relative ages of the classical second parameter pair NGC5272 and NGC6205, and indicate that these clusters have ages that differ by no more than +/- 1 Gyr. These results thus support the notion that age is not the second parameter. We tentatively conclude that NGC6287 and NGC6341 have ages that differ by no more than +/- 2 Gyr. However, the near-infrared spectral energy distributions of stars in NGC6287 appear to differ from those of stars in outer halo clusters, bringing into question the validity of this age estimate.Comment: 22 pages, 17 figures. To be published in the Astronomical Journa

    Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts

    Get PDF
    In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time

    Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La_2CuO_{4+y}

    Full text link
    We report neutron scattering measurements of the structure and magnetism of stage-4 La_2CuO_{4+y} with T_c ~42 K. Our diffraction results on a single crystal sample demonstrate that the excess oxygen dopants form a three-dimensional ordered superlattice within the interstitial regions of the crystal. The oxygen superlattice becomes disordered above T ~ 330 K, and a fast rate of cooling can freeze-in the disordered-oxygen state. Hence, by controlling the cooling rate, the degree of dopant disorder in our La_2CuO_{4+y} crystal can be varied. We find that a higher degree of quenched disorder reduces T_c by ~ 5 K relative to the ordered-oxygen state. At the same time, the quenched disorder enhances the spin density wave order in a manner analogous to the effects of an applied magnetic field.Comment: 4 figures included in text; submitted to PR

    Quasi One-Dimensional Spin Fluctuations in YBa(2)Cu(3)O(6+x)

    Full text link
    We study the spin fluctuation of the oxygen deficient planes of YBa(2)Cu(3)O(6+x). The Cu-O chains that constitute these planes are described by a model that includes antiferromagnetic interactions between spins and Kondo-like scattering of oxygen holes. The spectrum of magnetic excitations shows the presence of incommensurate dynamic fluctuations along the direction of the chains. The presence of itinerant holes is responsible for the existence of important differences between the spin dynamics of this system and that of a quasi-one-dimensional localized antiferromagnet. We comment on the possibility of experimental observation of these fluctuations.Comment: 22 pages, REVTEX, 3 figures, to appear in PRB55 (1May 1997

    Cu(2) nuclear resonance evidence for an original magnetic phase in aged 60K-superconductors RBa2Cu3O6+x (R=Tm,Y)

    Full text link
    It is widely believed that the long-range antiferromagnetic order in the RBa2Cu3O6+x compounds (R=Y and rare earths except of Ce, Pr, Tb) is totally suppressed for the oxygen index x>0.4 (AFM insulator-metal transition). We present the results of the copper NQR/NMR studies of aged RBa2Cu3O6+x (R=Tm,Y) samples showing that a magnetic order can still be present at oxygen contents x up to at least 0.7 and at temperatures as high as 77K.Comment: 7 pages, 6 figures. Submitted to Phys.Rev.

    Hole concentration and phonon renormalization in Ca-doped YBa_2Cu_3O_y (6.76 < y < 7.00)

    Full text link
    In order to access the overdoped regime of the YBa_2Cu_3O_y phase diagram, 2% Ca is substituted for Y in YBa_2Cu_3O_y (y = 7.00,6.93,6.88,6.76). Raman scattering studies have been carried out on these four single crystals. Measurements of the superconductivity-induced renormalization in frequency (Delta \omega) and linewidth (\Delta 2\gamma) of the 340 cm^{-1} B_{1g} phonon demonstrate that the magnitude of the renormalization is directly related to the hole concentration (p), and not simply the oxygen content. The changes in \Delta \omega with p imply that the superconducting gap (\Delta_{max}) decreases monotonically with increasing hole concentration in the overdoped regime, and \Delta \omega falls to zero in the underdoped regime. The linewidth renormalization \Delta 2\gamma is negative in the underdoped regime, crossing over at optimal doping to a positive value in the overdoped state.Comment: 18 pages; 5 figures; submitted to Phys. Rev. B Oct. 24, 2002 (BX8292

    X-Ray-Diffraction Study of Charge-Density-Waves and Oxygen-Ordering in YBa2Cu3O6+x Superconductor

    Full text link
    We report a temperature-dependent increase below 300 K of diffuse superlattice peaks corresponding to q_0 =(~2/5,0,0) in an under-doped YBa_2Cu_3O_6+x superconductor (x~0.63). These peaks reveal strong c-axis correlations involving the CuO_2 bilayers, show a non-uniform increase below \~220 K with a plateau for ~100-160 K, and appear to saturate in the superconducting phase. We interpret this unconventional T-dependence of the ``oxygen-ordering'' peaks as a manifestation of a charge density wave in the CuO_2 planes coupled to the oxygen-vacancy ordering.Comment: 4 pages, 4 figure

    Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x

    Full text link
    The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature dependence of the in-plane optical conductivity of optimally-doped YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the experiment, the sum rule is obeyed in both materials. However, the energy scale \omega_c required to recover the full strength of the superfluid \rho_s in the two materials is dramatically different; \omega_c \simeq 800 cm^{-1} in the optimally doped system (close to twice the maximum of the superconducting gap, 2\Delta_0), but \omega_c \gtrsim 5000 cm^{-1} in the underdoped system. In both materials, the normal-state scattering rate close to the critical temperature is small, \Gamma < 2\Delta_0, so that the materials are not in the dirty limit and the relevant energy scale for \rho_s in a BCS material should be twice the energy gap. The FGT sum rule in the optimally-doped material suggests that the majority of the spectral weight of the condensate comes from energies below 2\Delta_0, which is consistent with a BCS material in which the condensate originates from a Fermi liquid normal state. In the underdoped material the larger energy scale may be a result of the non-Fermi liquid nature of the normal state. The dramatically different energy scales suggest that the nature of the normal state creates specific conditions for observing the different aspects of what is presumably a central mechanism for superconductivity in these materials.Comment: RevTeX 4 file, 9 pages with 7 embedded eps figure

    On the stability of 2 \sqrt{2} x 2 \sqrt{2} oxygen ordered superstructures in YBa2Cu3O6+x

    Full text link
    We have compared the ground-state energy of several observed or proposed " 2 \sqrt{2} x 2 \sqrt{2} oxygen (O) ordered superstructures " (from now on HS), with those of "chain superstructures" (CS) (in which the O atoms of the basal plane are ordered in chains), for different compositions x in YBa2Cu3O6+x. The model Hamiltonian contains i) the Madelung energy, ii) a term linear in the difference between Cu and O hole occupancies which controls charge transfer, and iii) covalency effects based on known results for tJt-J models in one and two dimensions. The optimum distribution of charge is determined minimizing the total energy, and depends on two parameters which are determined from known results for x=1 and x=0.5. We obtain that on the O lean side, only CS are stable, while for x=7/8, a HS with regularly spaced O vacancies added to the x=1 structure is more stable than the corresponding CS for the same x. We find that the detailed positions of the atoms in the structure, and long-range Coulomb interactions, are crucial for the electronic structure, the mechanism of charge transfer, the stability of the different phases, and the possibility of phase separation.Comment: 24 text pages, Latex, one fig. included as ps file, to be publisheb in Phys. Rev.
    corecore