965 research outputs found

    Rapid detection of Staphylococcus aureus and Streptococcus pneumoniae by real-time analysis of volatile metabolites

    Full text link
    Early detection of pathogenic bacteria is needed for rapid diagnostics allowing adequate and timely treatment of infections. In this study, we show that secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) can be used as a diagnostic tool for rapid detection of bacterial infections as a supportive system for current state-of-the-art diagnostics. Volatile organic compounds (VOCs) produced by growing S. aureus or S. pneumoniae cultures on blood agar plates were detected within minutes and allowed for the distinction of these two bacteria on a species and even strain level within hours. Furthermore, we obtained a fingerprint of clinical patient samples within minutes of measurement and predominantly observed a separation of samples containing live bacteria compared to samples with no bacterial growth. Further development of this technique may reduce the time required for microbiological diagnosis and should help to improve patient's tailored treatment. Keywords: Applied microbiology; Biological sciences tools; Diagnostics; Microbiology

    Pulmonary Surfactant Proteins are Inhibited by IgA Autoantibodies in Severe COVID-19

    Full text link
    Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 bronchoalveolar lavage fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on bronchoalveolar lavage fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and main results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19, but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA against pulmonary surfactant proteins B and C and that these antibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Intervertebral disc cell chondroptosis elicits neutrophil response in Staphylococcus aureus spondylodiscitis

    Full text link
    To understand the pathophysiology of spondylodiscitis due to Staphylococcus aureus, an emerging infectious disease of the intervertebral disc (IVD) and vertebral body with a high complication rate, we combined clinical insights and experimental approaches. Clinical data and histological material of nine patients suffering from S. aureus spondylodiscitis were retrospectively collected at a single center. To mirror the clinical findings experimentally, we developed a novel porcine ex vivo model mimicking acute S. aureus spondylodiscitis and assessed the interaction between S. aureus and IVD cells within their native environment. In addition, the inflammatory features underlying this interaction were assessed in primary human IVD cells. Finally, mirroring the clinical findings, we assessed primary human neutrophils for their ability to respond to secreted inflammatory modulators of IVD cells upon the S. aureus challenge. Acute S. aureus spondylodiscitis in patients was characterized by tissue necrosis and neutrophil infiltration. Additionally, the presence of empty IVD cells' lacunae was observed. This was mirrored in the ex vivo porcine model, where S. aureus induced extensive IVD cell death, leading to empty lacunae. Concomitant engagement of the apoptotic and pyroptotic cell death pathways was observed in primary human IVD cells, resulting in cytokine release. Among the released cytokines, functionally intact neutrophil-priming as well as broad pro- and anti-inflammatory cytokines which are known for their involvement in IVD degeneration were found. In patients as well as ex vivo in a novel porcine model, S. aureus IVD infection caused IVD cell death, resulting in empty lacunae, which was accompanied by the release of inflammatory markers and recruitment of neutrophils. These findings offer valuable insights into the important role of inflammatory IVD cell death during spondylodiscitis and potential future therapeutic approaches

    Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease.

    Get PDF
    Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had nonneutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263

    Factor copula models for item response data

    Get PDF
    Factor or conditional independence models based on copulas are proposed for multivariate discrete data such as item responses. The factor copula models have interpretations of latent maxima/minima (in comparison with latent means) and can lead to more probability in the joint upper or lower tail compared with factor models based on the discretized multivariate normal distribution (or multidimensional normal ogive model). Details on maximum likelihood estimation of parameters for the factor copula model are given, as well as analysis of the behavior of the log-likelihood. Our general methodology is illustrated with several item response data sets, and it is shown that there is a substantial improvement on existing models both conceptually and in fit to data

    Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease

    Full text link
    Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263
    corecore