328 research outputs found

    Role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials

    Get PDF
    We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials

    Spatial field correlation, the building block of mesoscopic fluctuations

    Full text link
    The absence of self averaging in mesoscopic systems is a consequence of long-range intensity correlation. Microwave measurements suggest and diagrammatic calculations confirm that the correlation function of the normalized intensity with displacement of the source and detector, ΔR\Delta R and Δr\Delta r, respectively, can be expressed as the sum of three terms, with distinctive spatial dependences. Each term involves only the sum or the product of the square of the field correlation function, FFE2F \equiv F_{E}^2. The leading-order term is the product, the next term is proportional to the sum. The third term is proportional to [F(ΔR)F(Δr)+[F(ΔR)+F(Δr)]+1][F(\Delta R)F(\Delta r) + [F(\Delta R)+F(\Delta r)] + 1].Comment: Submitted to PR

    Coherent backscattering of light by atoms in the saturated regime

    Full text link
    We present the first calculation of coherent backscattering with inelastic scattering by saturated atoms. We consider the scattering of a quasi-monochromatic laser pulse by two distant atoms in free space. By restricting ourselves to scattering of two photons, we employ a perturbative approach, valid up to second order in the incident laser intensity. The backscattering enhancement factor is found to be smaller than two (after excluding single scattering), indicating a loss of coherence between the doubly scattered light emitted by both atoms. Since the undetected photon carries information about the path of the detected photon, the coherence loss can be explained by a which-path argument, in analogy with a double-slit experiment.Comment: 16 pages, 10 figure

    Coherent Backscattering of Light by Cold Atoms

    Get PDF
    Light propagating in an optically thick sample experiences multiple scattering. It is now known that interferences alter this propagation, leading to an enhanced backscattering, a manifestation of weak localization of light in such diffuse samples. This phenomenon has been extensively studied with classical scatterers. In this letter we report the first experimental evidence for coherent backscattering of light in a laser-cooled gas of Rubidium atoms.Comment: 4 pages REVTEX, 1 page color image GIF, accepted for publication in Phys. Rev. Let

    Temperature oscillations of magnetization observed in nanofluid ferromagnetic graphite

    Full text link
    We report on unusual magnetic properties observed in the nanofluid room-temperature ferromagnetic graphite (with an average particle size of l=10nm). More precisely, the measured magnetization exhibits a low-temperature anomaly (attributed to manifestation of finite size effects below the quantum temperature) as well as pronounced temperature oscillations above T=50K (attributed to manifestation of the hard-sphere type pair correlations between ferromagnetic particles in the nanofluid)

    Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study

    Get PDF
    We use lattice Boltzmann simulations, in conjunction with Ewald summation methods, to investigate the role of hydrodynamic interactions in colloidal suspensions of dipolar particles, such as ferrofluids. Our work addresses volume fractions ϕ\phi of up to 0.20 and dimensionless dipolar interaction parameters λ\lambda of up to 8. We compare quantitatively with Brownian dynamics simulations, in which many-body hydrodynamic interactions are absent. Monte Carlo data are also used to check the accuracy of static properties measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic interactions slow down both the long-time and the short-time decays of the intermediate scattering function S(q,t)S(q,t), for wavevectors close to the peak of the static structure factor S(q)S(q), by a factor of roughly two. The long-time slowing is diminished at high interaction strengths whereas the short-time slowing (quantified via the hydrodynamic factor H(q)H(q)) is less affected by the dipolar interactions, despite their strong effect on the pair distribution function arising from cluster formation. Cluster formation is also studied in transient data following a quench from λ=0\lambda = 0; hydrodynamic interactions slow the formation rate, again by a factor of roughly two

    Localization of electromagnetic waves in a two dimensional random medium

    Full text link
    Motivated by previous investigations on the radiative effects of the electric dipoles embedded in structured cavities, localization of electromagnetic waves in two dimensions is studied {\it ab initio} for a system consisting of many randomly distributed two dimensional dipoles. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for the total electromagnetic field. The results show that spatially localized electromagnetic waves are possible in such a simple but realistic disordered system. When localization occurs, a coherent behavior appears and is revealed as a unique property differentiating localization from either the residual absorption or the attenuation effects

    Field and intensity correlations in random media

    Full text link
    Measurements of the microwave field transmitted through a random medium allows direct access to the field correlation function, whose complex square is the short range or C1 contribution to the intensity correlation function C. The frequency and spatial correlation function are compared to their Fourier pairs, the time of flight distribution and the specific intensity, respectively. The longer range contribution to intensity correlation is obtained directly by subtracting C1 from C and is in good agreement with theory.Comment: 9 pages, 5 figures, submitted to Phys.Rev.

    Strong magnetic response of submicron Silicon particles in the infrared

    Get PDF
    High-permittivity dielectric particles with resonant magnetic properties are being explored as constitutive elements of new metamaterials and devices in the microwave regime. Magnetic properties of low-loss dielectric nanoparticles in the visible or infrared are not expected due to intrinsic low refractive index of optical materials in these regimes. Here we analyze the dipolar electric and magnetic response of loss-less dielectric spheres made of moderate permittivity materials. For low material refractive index there are no sharp resonances due to strong overlapping between different multipole contributions. However, we find that Silicon particles with refractive index 3.5 and radius approx. 200nm present a dipolar and strong magnetic resonant response in telecom and near-infrared frequencies, (i.e. at wavelengths approx. 1.2-2 micrometer). Moreover, the light scattered by these Si particles can be perfectly described by dipolar electric and magnetic fields, quadrupolar and higher order contributions being negligible.Comment: 10 pages, 5 figure

    Disorder Effects on Exciton-Polariton Condensates

    Full text link
    The impact of a random disorder potential on the dynamical properties of Bose Einstein condensates is a very wide research field. In microcavities, these studies are even more crucial than in the condensates of cold atoms, since random disorder is naturally present in the semiconductor structures. In this chapter, we consider a stable condensate, defined by a chemical potential, propagating in a random disorder potential, like a liquid flowing through a capillary. We analyze the interplay between the kinetic energy, the localization energy, and the interaction between particles in 1D and 2D polariton condensates. The finite life time of polaritons is taken into account as well. In the first part, we remind the results of [G. Malpuech et al. Phys. Rev. Lett. 98, 206402 (2007).] where we considered the case of a static condensate. In that case, the condensate forms either a glassy insulating phase at low polariton density (strong localization), or a superfluid phase above the percolation threshold. We also show the calculation of the first order spatial coherence of the condensate versus the condensate density. In the second part, we consider the case of a propagating non-interacting condensate which is always localized because of Anderson localization. The localization length is calculated in the Born approximation. The impact of the finite polariton life time is taken into account as well. In the last section we consider the case of a propagating interacting condensate where the three regimes of strong localization, Anderson localization, and superfluid behavior are accessible. The localization length is calculated versus the system parameters. The localization length is strongly modified with respect to the non-interacting case. It is infinite in the superfluid regime whereas it is strongly reduced if the fluid flows with a supersonic velocity.Comment: chapter for a book "Exciton Polaritons in Microcavities: New Frontiers" by Springer (2012), the original publication is available at http://www.springerlink.co
    corecore