62 research outputs found

    Recovering joint and individual components in facial data

    Get PDF
    A set of images depicting faces with different expressions or in various ages consists of components that are shared across all images (i.e., joint components) and imparts to the depicted object the properties of human faces and individual components that are related to different expressions or age groups. Discovering the common (joint) and individual components in facial images is crucial for applications such as facial expression transfer. The problem is rather challenging when dealing with images captured in unconstrained conditions and thus are possibly contaminated by sparse non-Gaussian errors of large magnitude (i.e., sparse gross errors) and contain missing data. In this paper, we investigate the use of a method recently introduced in statistics, the so-called Joint and Individual Variance Explained (JIVE) method, for the robust recovery of joint and individual components in visual facial data consisting of an arbitrary number of views. Since, the JIVE is not robust to sparse gross errors, we propose alternatives, which are 1) robust to sparse gross, non-Gaussian noise, 2) able to automatically find the individual components rank, and 3) can handle missing data. We demonstrate the effectiveness of the proposed methods to several computer vision applications, namely facial expression synthesis and 2D and 3D face age progression in-the-wild

    Robust statistical frontalization of human and animal faces

    Get PDF
    The unconstrained acquisition of facial data in real-world conditions may result in face images with significant pose variations, illumination changes, and occlusions, affecting the performance of facial landmark localization and recognition methods. In this paper, a novel method, robust to pose, illumination variations, and occlusions is proposed for joint face frontalization and landmark localization. Unlike the state-of-the-art methods for landmark localization and pose correction, where large amount of manually annotated images or 3D facial models are required, the proposed method relies on a small set of frontal images only. By observing that the frontal facial image of both humans and animals, is the one having the minimum rank of all different poses, a model which is able to jointly recover the frontalized version of the face as well as the facial landmarks is devised. To this end, a suitable optimization problem is solved, concerning minimization of the nuclear norm (convex surrogate of the rank function) and the matrix â„“1 norm accounting for occlusions. The proposed method is assessed in frontal view reconstruction of human and animal faces, landmark localization, pose-invariant face recognition, face verification in unconstrained conditions, and video inpainting by conducting experiment on 9 databases. The experimental results demonstrate the effectiveness of the proposed method in comparison to the state-of-the-art methods for the target problems

    Robust statistical face frontalization

    Get PDF
    Recently, it has been shown that excellent results can be achieved in both facial landmark localization and pose-invariant face recognition. These breakthroughs are attributed to the efforts of the community to manually annotate facial images in many different poses and to collect 3D facial data. In this paper, we propose a novel method for joint frontal view reconstruction and landmark localization using a small set of frontal images only. By observing that the frontal facial image is the one having the minimum rank of all different poses, an appropriate model which is able to jointly recover the frontalized version of the face as well as the facial landmarks is devised. To this end, a suitable optimization problem, involving the minimization of the nuclear norm and the matrix l1 norm is solved. The proposed method is assessed in frontal face reconstruction, face landmark localization, pose-invariant face recognition, and face verification in unconstrained conditions. The relevant experiments have been conducted on 8 databases. The experimental results demonstrate the effectiveness of the proposed method in comparison to the state-of-the-art methods for the target problems

    RAPS: Robust and efficient automatic construction of person-specific deformable models

    Get PDF
    The construction of Facial Deformable Models (FDMs) is a very challenging computer vision problem, since the face is a highly deformable object and its appearance drastically changes under different poses, expressions, and illuminations. Although several methods for generic FDMs construction, have been proposed for facial landmark localization in still images, they are insufficient for tasks such as facial behaviour analysis and facial motion capture where perfect landmark localization is required. In this case, person-specific FDMs (PSMs) are mainly employed, requiring manual facial landmark annotation for each person and person-specific training. In this paper, a novel method for the automatic construction of PSMs is proposed. To this end, an orthonormal subspace which is suitable for facial image reconstruction is learnt. Next, to correct the fittings of a generic model, image congealing (i.e., batch image aliment) is performed by employing only the learnt orthonormal subspace. Finally, the corrected fittings are used to construct the PSM. The image congealing problem is solved by formulating a suitable sparsity regularized rank minimization problem. The proposed method outperforms the state-of-the art methods that is compared to, in terms of both landmark localization accuracy and computational time

    Robust joint and individual variance explained

    Get PDF
    Discovering the common (joint) and individual subspaces is crucial for analysis of multiple data sets, including multi-view and multi-modal data. Several statistical machine learning methods have been developed for discovering the common features across multiple data sets. The most well studied family of the methods is that of Canonical Correlation Analysis (CCA) and its variants. Even though the CCA is a powerful tool, it has several drawbacks that render its application challenging for computer vision applications. That is, it discovers only common features and not individual ones, and it is sensitive to gross errors present in visual data. Recently, efforts have been made in order to develop methods that discover individual and common components. Nevertheless, these methods are mainly applicable in two sets of data. In this paper, we investigate the use of a recently proposed statistical method, the so-called Joint and Individual Variance Explained (JIVE) method, for the recovery of joint and individual components in an arbitrary number of data sets. Since, the JIVE is not robust to gross errors, we propose alternatives, which are both robust to non-Gaussian noise of large magnitude, as well as able to automatically find the rank of the individual components. We demonstrate the effectiveness of the proposed approach to two computer vision applications, namely facial expression synthesis and face age progression in-the-wild

    Back to the future: A fully automatic method for robust age progression

    Get PDF
    It has been shown that significant age difference between a probe and gallery face image can decrease the matching accuracy. If the face images can be normalized in age, there can be a huge impact on the face verification accuracy and thus many novel applications such as matching driver's license, passport and visa images with the real person's images can be effectively implemented. Face progression can address this issue by generating a face image for a specific age. Many researchers have attempted to address this problem focusing on predicting older faces from a younger face. In this paper, we propose a novel method for robust and automatic face progression in totally unconstrained conditions. Our method takes into account that faces belonging to the same age-groups share age patterns such as wrinkles while faces across different age-groups share some common patterns such as expressions and skin colors. Given training images of K different age-groups the proposed method learns to recover K low-rank age and one low-rank common components. These extracted components from the learning phase are used to progress an input face to younger as well as older ages in bidirectional fashion. Using standard datasets, we demonstrate that the proposed progression method outperforms state-of-the-art age progression methods and also improves matching accuracy in a face verification protocol that includes age progression

    AgeDB: the first manually collected, in-the-wild age database

    Get PDF
    Over the last few years, increased interest has arisen with respect to age-related tasks in the Computer Vision community. As a result, several "in-the-wild" databases annotated with respect to the age attribute became available in the literature. Nevertheless, one major drawback of these databases is that they are semi-automatically collected and annotated and thus they contain noisy labels. Therefore, the algorithms that are evaluated in such databases are prone to noisy estimates. In order to overcome such drawbacks, we present in this paper the first, to the best of knowledge, manually collected "in-the-wild" age database, dubbed AgeDB, containing images annotated with accurate to the year, noise-free labels. As demonstrated by a series of experiments utilizing state-of-the-art algorithms, this unique property renders AgeDB suitable when performing experiments on age-invariant face verification, age estimation and face age progression "in-the-wild"

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Linking epigenetics and biological conservation: Towards a conservation epigenetics perspective

    Get PDF
    International audience1. Biodiversity conservation is a global issue where the challenge is to integrate all levels of biodiversity to ensure the long-term evolutionary potential and resilience of biological systems. Genetic approaches have largely contributed to conservation biology by defining "conservation entities" accounting for their evolutionary history and adaptive potential, the so-called evolutionary significant units (ESUs). Yet, these approaches only loosely integrate the short-term ecological history of organisms. 2. Here, we argue that epigenetic variation, and more particularly DNA methylation, represents a molecular component of biodiversity that directly links the genome to the environment. As such, it provides the required information on the ecological background of organisms for an integrative field of conservation biology. 3. We synthesize knowledge about the importance of epigenetic mechanisms in (a) orchestrating fundamental development alternatives in organisms, (b) enabling individuals to respond in real-time to selection pressures and (c) improving ecosystem stability and functioning. 4. Using practical examples in conservation biology, we illustrate the relevance of DNA methylation (a) as biomarkers of past and present environmental stress events as well as biomarkers of physiological conditions of individuals; (b) for documenting the ecological structuring/clustering of wild populations and hence for better integrating ecology into ESUs; (c) for improving conservation transloca-tions; and (d) for studying landscape functional connectivity. 5. We conclude that an epigenetic conservation perspective will provide environmental managers the possibility to refine ESUs, to set conservation plans taking into account the capacity of organisms to rapidly cope with environmental changes, and hence to improve the conservation of wild populations. K E Y W O R D S conservation, DNA methylation, ecological timescales, epigenetic, evolutionary significant unit

    Robust statistical frontalization of human and animal faces

    Get PDF
    The unconstrained acquisition of facial data in real-world conditions may result in face images with significant pose variations, illumination changes, and occlusions, affecting the performance of facial landmark localization and recognition methods. In this paper, a novel method, robust to pose, illumination variations, and occlusions is proposed for joint face frontalization and landmark localization. Unlike the state-of-the-art methods for landmark localization and pose correction, where large amount of manually annotated images or 3D facial models are required, the proposed method relies on a small set of frontal images only. By observing that the frontal facial image of both humans and animals, is the one having the minimum rank of all different poses, a model which is able to jointly recover the frontalized version of the face as well as the facial landmarks is devised. To this end, a suitable optimization problem is solved, concerning minimization of the nuclear norm (convex surrogate of the rank function) and the matrix â„“1 norm accounting for occlusions. The proposed method is assessed in frontal view reconstruction of human and animal faces, landmark localization, pose-invariant face recognition, face verification in unconstrained conditions, and video inpainting by conducting experiment on 9 databases. The experimental results demonstrate the effectiveness of the proposed method in comparison to the state-of-the-art methods for the target problems
    • …
    corecore