577 research outputs found
Tiling Spaces are Inverse Limits
Let M be an arbitrary Riemannian homogeneous space, and let Omega be a space
of tilings of M, with finite local complexity (relative to some symmetry group
Gamma) and closed in the natural topology. Then Omega is the inverse limit of a
sequence of compact finite-dimensional branched manifolds. The branched
manifolds are (finite) unions of cells, constructed from the tiles themselves
and the group Gamma. This result extends previous results of Anderson and
Putnam, of Ormes, Radin and Sadun, of Bellissard, Benedetti and Gambaudo, and
of G\"ahler. In particular, the construction in this paper is a natural
generalization of G\"ahler's.Comment: Latex, 6 pages, including one embedded figur
A Simple Geometric Representative for of a Point
For (or ) Donaldson theory on a 4-manifold , we construct a
simple geometric representative for of a point. Let be a generic
point in . Then the set is reducible , with
coefficient -1/4 and appropriate orientation, is our desired geometric
representative.Comment: Updated 2018 to published version. 8 pages, AmS-TeX, no figure
X-ray Emission from the Radio Jet in 3C 120
We report the discovery of X-ray emission from a radio knot at a projected
distance of 25" from the nucleus of the Seyfert galaxy, 3C 120. The data were
obtained with the ROSAT High Resolution Imager (HRI). Optical upper limits for
the knot preclude a simple power law extension of the radio spectrum and we
calculate some of the physical parameters for thermal bremsstrahlung and
synchrotron self-Compton models. We conclude that no simple model is consistent
with the data but if the knot contains small regions with flat spectra, these
could produce the observed X-rays (via synchrotron emission) without being
detected at other wavebands.Comment: 6 pages latex plus 3 ps/eps figures. Uses 10pt.sty and
emulateapj.sty. Accepted for publication in the ApJ (6 Jan 99
Results from the Blazar Monitoring Campaign at the Whipple 10m Gamma-ray Telescope
In September 2005, the observing program of the Whipple 10 m gamma-ray
telescope was redefined to be dedicated almost exclusively to AGN monitoring.
Since then the five Northern Hemisphere blazars that had already been detected
at Whipple are monitored routinely each night that they are visible. Thanks to
the efforts of a large number of multiwavelength collaborators, the first year
of this program has been very successful. We report here on the analysis of
Markarian 421 observations taken from November, 2005 to May, 2006 in the
gamma-ray, X-ray, optical and radio bands.Comment: 4 pages; contribution to the 30th International Cosmic Ray
Conference, Merida, Mexico, July 200
Fredholm Indices and the Phase Diagram of Quantum Hall Systems
The quantized Hall conductance in a plateau is related to the index of a
Fredholm operator. In this paper we describe the generic ``phase diagram'' of
Fredholm indices associated with bounded and Toeplitz operators. We discuss the
possible relevance of our results to the phase diagram of disordered integer
quantum Hall systems.Comment: 25 pages, including 7 embedded figures. The mathematical content of
this paper is similar to our previous paper math-ph/0003003, but the physical
analysis is ne
The Use of Energy Dispersive X-ray Diffraction (EDXD) for the Investigation of the Structural and Compositional Features of Old and Modern Papers
Abstract This work reports the first application of the Energy Dispersive X-ray Diffraction (EDXD) for the investigation of the structural and compositional features of old and modern papers. Based on the differences observed among various types of paper and building an appropriate database we expect to be able to rapidly identify the provenance of the paper itself using a fast non-destructive technique. This result is quite interesting in the field of art conservation and archaeometry
Pupillometry evaluation of melanopsin retinal ganglion cell function and sleep-wake activity in pre-symptomatic Alzheimer's disease
BACKGROUND:
Melanopsin-expressing retinal ganglion cells (mRGCs), intrinsically photosensitive RGCs, mediate the light-based pupil response and the light entrainment of the body's circadian rhythms through their connection to the pretectal nucleus and hypothalamus, respectively. Increased awareness of circadian rhythm dysfunction in neurological conditions including Alzheimer's disease (AD), has led to a wave of research focusing on the role of mRGCs in these diseases. Postmortem retinal analyses in AD patients demonstrated a significant loss of mRGCs, and in vivo measurements of mRGC function with chromatic pupillometry may be a potential biomarker for early diagnosis and progression of AD.
METHODS:
We performed a prospective case-control study in 20 cognitively healthy study participants: 10 individuals with pre-symptomatic AD pathology (pre-AD), identified by the presence of abnormal levels of amyloid \u3b242 and total Tau proteins in the cerebrospinal fluid, and 10 age-matched controls with normal CSF amyloid \u3b242 and Tau levels. To evaluate mRGC function, we used a standardized protocol of chromatic pupillometry on a Ganzfeld system using red (640 nm) and blue (450 nm) light stimuli and measured the pupillary light response (PLR). Non-invasive wrist actigraphy and standardized sleep questionnaires were also completed to evaluate rest-activity circadian rhythm.
RESULTS:
Our results did not demonstrate a significant difference of the PLR between pre-AD and controls but showed a variability of the PLR in the pre-AD group compared with controls on chromatic pupillometry. Wrist actigraphy showed variable sleep-wake patterns and irregular circadian rhythms in the pre-AD group compared with controls.
CONCLUSIONS:
The variability seen in measurements of mRGC function and sleep-wake cycle in the pre-AD group suggests that mRGC dysfunction occurs in the pre-symptomatic AD stages, preceding cognitive decline. Future longitudinal studies following progression of these participants can help in elucidating the relationship between mRGCs and circadian rhythm dysfunction in AD
Topological Phases near a Triple Degeneracy
We study the pattern of three state topological phases that appear in systems
with real Hamiltonians and wave functions. We give a simple geometric
construction for representing these phases. We then apply our results to
understand previous work on three state phases. We point out that the ``mirror
symmetry'' of wave functions noticed in microwave experiments can be simply
understood in our framework.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let
Chromatic Pupillometry Findings in Alzheimer’s Disease
Intrinsically photosensitive melanopsin retinal ganglion cells (mRGCs) are crucial for non-image forming functions of the eye, including the photoentrainment of circadian rhythms and the regulation of the pupillary light reflex (PLR). Chromatic pupillometry, using light stimuli at different wavelengths, makes possible the isolation of the contribution of rods, cones, and mRGCs to the PLR. In particular, post-illumination pupil response (PIPR) is the most reliable pupil metric of mRGC function. We have previously described, in post-mortem investigations of AD retinas, a loss of mRGCs, and in the remaining mRGCs, we demonstrated extensive morphological abnormalities. We noted dendrite varicosities, patchy distribution of melanopsin, and reduced dendrite arborization. In this study, we evaluated, with chromatic pupillometry, the PLR in a cohort of mild-moderate AD patients compared to controls. AD and controls also underwent an extensive ophthalmological evaluation. In our AD cohort, PIPR did not significantly differ from controls, even though we observed a higher variability in the AD group and 5/26 showed PIPR values outside the 2 SD from the control mean values. Moreover, we found a significant difference between AD and controls in terms of rod-mediated transient PLR amplitude. These results suggest that in the early stage of AD there are PLR abnormalities that may reflect a pathology affecting mRGC dendrites before involving the mRGC cell body. Further studies, including AD cases with more severe and longer disease duration, are needed to further explore this hypothesis
An Investigation of the Role of Macular Pigment in Attenuating Photostress through Comparison between Blue and Green Photostress Recovery Times
Purpose: Photostress recovery time (PSRT) is the time required for the macula to return to its normal functioning after the bleaching of cone photopigments due to light exposure, usually white. This work investigates the role of macular pigment (MP) as an optical filter that attenuates photostress by analyses of PSRT at different wavelengths. Methods: Thirty-nine subjects (19–28 years) were exposed to blue/green photostress varying in irradiance. During photostress, pupil constriction (Cp) was measured. Twenty-seven subjects (20–27 years) were exposed to white photostress. After 25 s of photostress, the time (PSRT) required to read correctly a 0.2 logMAR letter was measured. Correlation was studied between PSRT, CP, and irradiance. Statistical significance of differences between PSRTs was evaluated at Log(irradiance(quanta s−1 cm−2)) = 14 by Student’s t statistics. Results: Cp and PSRT were found linearly correlated to Log(irradiance) for blue, green, and white. At Log(irradiance(quanta s−1 cm−2)) = 14, blue and green mean PSRTs resulted different (p 0.05). Conclusions: MP plays the role of an optical filter attenuating photostress. PSRT was substantially proportional to the number of incident photons corrected for the MP optical absorption, regardless of their wavelength
- …