16,139 research outputs found
A wind tunnel investigation into the effects of roof curvature on the aerodynamic drag experienced by a light goods vehicle
Roof curvature is used to increase ground vehicle camber and enhance rear-body boat-tailing to reduce aerodynamic drag. Little aerodynamic data is published for light goods vehicles (LGVs) which account for a significant proportion of annual UK licensed vehicle miles. This paper details scale wind tunnel measurements at Re = 1.6 × 106 of a generic LGV utilising interchangeable roof panels to investigate the effects of curved roof profile on aerodynamic drag at simulated crosswinds between -6° and 16°. Optimum magnitudes of roof profile depth and axial location are suggested and the limited dataset indicates that increasing roof curvature is effective in reducing drag over a large yaw range, compared to a flat roof profile. This is primarily due to increased base pressure, possibly from enhanced mixing of longitudinal vortices shed from the rear-body upper side edges and increased turbulent mixing in the near-wake due to the increased effective boat-tail angle
MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission
A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band
Aggregating available soil water holding capacity data for crop yield models
The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile
Transparent yttrium hydride thin films prepared by reactive sputtering
Metal hydrides have earlier been suggested for utilization in solar cells.
With this as a motivation we have prepared thin films of yttrium hydride by
reactive magnetron sputter deposition. The resulting films are metallic for low
partial pressure of hydrogen during the deposition, and black or
yellow-transparent for higher partial pressure of hydrogen. Both metallic and
semiconducting transparent YHx films have been prepared directly in-situ
without the need of capping layers and post-deposition hydrogenation. Optically
the films are similar to what is found for YHx films prepared by other
techniques, but the crystal structure of the transparent films differ from the
well-known YH3 phase, as they have an fcc lattice instead of hcp
Goddard X-ray astronomy contributions to the IAU/COSPAR (1982)
The relation of X-ray flux to both the continuum flux in the optical and radio bands, and to the line emission properties of these objects were studied. The Einstein Observatory, because of increased sensitivity and improved angular resolution, increased substantially the number of known X-ray emitting active galactic nuclei. The Einstein imaging instruments detected morphology in AGN X-ray emission, in particular from jetlike structures in Cen-A, M87, and 3C273. The improved energy resolution and sensitivity of the spectrometers onboard the Observatory provide information on the geometry and ionization structure of the region responsible for the broad optical emission lines in a few AGN's. This information, combined with theoretical modeling and IUE and optical observations, allows the construction of a moderately detailed picture of the broad line region in these objects
Radii and binding energies in oxygen isotopes: a puzzle for nuclear forces
We present a systematic study of both nuclear radii and binding energies in
(even) oxygen isotopes from the valley of stability to the neutron drip line.
Both charge and matter radii are compared to state-of-the-art {\it ab initio}
calculations along with binding energy systematics. Experimental matter radii
are obtained through a complete evaluation of the available elastic proton
scattering data of oxygen isotopes. We show that, in spite of a good
reproduction of binding energies, {\it ab initio} calculations with
conventional nuclear interactions derived within chiral effective field theory
fail to provide a realistic description of charge and matter radii. A novel
version of two- and three-nucleon forces leads to considerable improvement of
the simultaneous description of the three observables for stable isotopes, but
shows deficiencies for the most neutron-rich systems. Thus, crucial challenges
related to the development of nuclear interactions remain.Comment: 6 pages, 5 figures, Submitted to Nature Physics, April 12th 2016;
first version (v1 Arxiv) Internal Report Preprint Irfu-18 December 2015. 6
p., 5 fig., Submitted to Physical Review Letters, April 29, May 3rd 2016; 2nd
version. Int. Rep. Irfu-24 May 2016. Published in PRL, 27 July 2016 with the
modified title (Radii and binding energies in oxygen isotopes: a challenge
for nuclear forces
The Kinematic and Plasma Properties of X-ray Knots in Cassiopeia A from the Chandra HETGS
We present high-resolution X-ray spectra from the young supernova remnant Cas
A using a 70-ks observation taken by the Chandra High Energy Transmission
Grating Spectrometer (HETGS). Line emission, dominated by Si and S ions, is
used for high-resolution spectral analysis of many bright, narrow regions of
Cas A to examine their kinematics and plasma state. These data allow a 3D
reconstruction using the unprecedented X-ray kinematic results: we derive
unambiguous Doppler shifts for these selected regions, with values ranging
between -2500 and +4000 km/s. Plasma diagnostics of these regions, derived from
line ratios of resolved He-like triplet lines and H-like lines of Si, indicate
temperatures largely around 1 keV, which we model as O-rich reverse-shocked
ejecta. The ionization age also does not vary considerably over these regions
of the remnant. The gratings analysis was complemented by the non-dispersed
spectra from the same dataset, which provided information on emission measure
and elemental abundances for the selected Cas A regions. The derived electron
density of X-ray emitting ejecta varies from 20 to 200 cm^{-3}. The measured
abundances of Mg, Si, S and Ca are consistent with O being the dominant element
in the Cas A plasma. With a diameter of 5 arcmin, Cas A is the largest source
observed with the HETGS to date. We, therefore, describe the technique we use
and some of the challenges we face in the HETGS data reduction from such an
extended, complex object.Comment: 26 pages, 16 figures, evised version (minor changes), accepted for
publication in ApJ (Oct 20 2006
Smart Materials as Intelligent Insulation
In order to provide a robust infrastructure for the transmission and distribution of electrical power, understanding and monitoring equipment ageing and failure is of paramount importance. Commonly, failure is associated with degradation of the dielectric material; therefore the introduction of a smart moiety into the material is a potentially attractive means of continual condition monitoring. It is important that any introduction of smart groups into the dielectric does not have any detrimental effect on the desirable electrical and mechanical properties of the bulk material. Initial work focussed on the introduction of fluorophores into a model dielectric system. Fluorescence is known to be a visible effect even at very low concentrations of active fluorophores and therefore was thought well suited to such an application. It was necessary both to optimise the active fluorophore itself and to determine the most appropriate manner in which to introduce the fluorophores into the insulating system. This presentation will describe the effect of introducing fluorophores into polymeric systems on the dielectric properties of the material and the findings thus far [1]. Alternative smart material systems will also be discussed along with the benefits and limitations of smart materials as electric field sensors
Analysis of the project fire re-entry package flow field final technical report
Theoretical prediction of state of gas in flow field surrounding Apollo type vehicle in reentry at hypersonic speed
- …