4,287 research outputs found

    On the morphological deviation in additive manufacturing of porous Ti6Al4V scaffold: a design consideration

    Get PDF
    Additively manufactured Ti scaffolds have been used for bone replacement and orthopaedic applications. In these applications, both morphological and mechanical properties are important for their in vivo performance. Additively manufactured Ti6Al4V triply periodic minimal surface (TPMS) scaffolds with diamond and gyroid structures are known to have high stiffness and high osseointegration properties, respectively. However, morphological deviations between the as-designed and as-built types of these scaffolds have not been studied before. In this study, the morphological and mechanical properties of diamond and gyroid scaffolds at macro and microscales were examined. The results demonstrated that the mean printed strut thickness was greater than the designed target value. For diamond scaffolds, the deviation increased from 7.5 ÎŒm (2.5% excess) for vertical struts to 105.4 ÎŒm (35.1% excess) for horizontal struts. For the gyroid design, the corresponding deviations were larger, ranging from 12.6 ÎŒm (4.2% excess) to 198.6 ÎŒm (66.2% excess). The mean printed pore size was less than the designed target value. For diamonds, the deviation of the mean pore size from the designed value increased from 33.1 ÎŒm (-3.0% excess) for vertical struts to 92.8 ÎŒm (-8.4% excess) for horizontal struts. The corresponding deviation for gyroids was larger, ranging from 23.8 ÎŒm (-3.0% excess) to 168.7 ÎŒm (-21.1% excess). Compressive Young's modulus of the bulk sample, gyroid and diamond scaffolds was calculated to be 35.8 GPa, 6.81 GPa and 7.59 GPa, respectively, via the global compression method. The corresponding yield strength of the samples was measured to be 1012, 108 and 134 MPa. Average microhardness and Young's modulus from α and ÎČ phases of Ti6Al4V from scaffold struts were calculated to be 4.1 GPa and 131 GPa, respectively. The extracted morphology and mechanical properties in this study could help understand the deviation between the as-design and as-built matrices, which could help develop a design compensation strategy before the fabrication of the scaffolds

    An Economic Study of the Effect of Android Platform Fragmentation on Security Updates

    Full text link
    Vendors in the Android ecosystem typically customize their devices by modifying Android Open Source Project (AOSP) code, adding in-house developed proprietary software, and pre-installing third-party applications. However, research has documented how various security problems are associated with this customization process. We develop a model of the Android ecosystem utilizing the concepts of game theory and product differentiation to capture the competition involving two vendors customizing the AOSP platform. We show how the vendors are incentivized to differentiate their products from AOSP and from each other, and how prices are shaped through this differentiation process. We also consider two types of consumers: security-conscious consumers who understand and care about security, and na\"ive consumers who lack the ability to correctly evaluate security properties of vendor-supplied Android products or simply ignore security. It is evident that vendors shirk on security investments in the latter case. Regulators such as the U.S. Federal Trade Commission have sanctioned Android vendors for underinvestment in security, but the exact effects of these sanctions are difficult to disentangle with empirical data. Here, we model the impact of a regulator-imposed fine that incentivizes vendors to match a minimum security standard. Interestingly, we show how product prices will decrease for the same cost of customization in the presence of a fine, or a higher level of regulator-imposed minimum security.Comment: 22nd International Conference on Financial Cryptography and Data Security (FC 2018

    More Discriminants with the Brezing-Weng Method

    Get PDF
    The Brezing-Weng method is a general framework to generate families of pairing-friendly elliptic curves. Here, we introduce an improvement which can be used to generate more curves with larger discriminants. Apart from the number of curves this yields, it provides an easy way to avoid endomorphism rings with small class number

    Verification of Unstructured Grid Adaptation Components

    Get PDF
    Adaptive unstructured grid techniques have made limited impact on production analysis workflows where the control of discretization error is critical to obtaining reliable simulation results. Recent progress has matured a number of independent implementations of flow solvers, error estimation methods, and anisotropic grid adaptation mechanics. Known differences and previously unknown differences in grid adaptation components and their integrated processes are identified here for study. Unstructured grid adaptation tools are verified using analytic functions and the Code Comparison Principle. Three analytic functions with different smoothness properties are adapted to show the impact of smoothness on implementation differences. A scalar advection-diffusion problem with an analytic solution that models a boundary layer is adapted to test individual grid adaptation components. Laminar flow over a delta wing and turbulent flow over an ONERA M6 wing are verified with multiple, independent grid adaptation procedures to show consistent convergence to fine-grid forces and a moment. The scalar problems illustrate known differences in a grid adaptation component implementation and a previously unknown interaction between components. The wing adaptation cases in the current study document a clear improvement to existing grid adaptation procedures. The stage is set for the infusion of verified grid adaptation into production fluid flow simulations

    Possible Jurassic age for part of Rakaia Terrane: implications for tectonic development of the Torlesse accretionary prism

    Get PDF
    Greywacke sandstone and argillite beds comprising Rakaia Terrane (Torlesse Complex) in mid Canterbury, South Island, New Zealand, are widely regarded as Late Triassic (Norian) in age based on the occurrence of Torlessia trace fossils, Monotis, and other taxa. This paleontological age assignment is tested using published 40Ar/39Ar mica and U-Pb zircon ages for these rocks and published and new zircon fission track (FT) ages. The youngest U-Pb zircon ages in the Rakaia Terrane rocks in mid Canterbury are Norian, whereas 10-20% of the 40Ar/39Ar muscovite ages are younger than Norian. Numerical modelling of these mica ages shows that they cannot have originated from partial thermal overprinting in the Torlesse prism if the thermal maximum was short-lived and early in the prism history (210-190 Ma), as commonly inferred for these rocks. The young component of mica ages could, however, be explained by extended residence (200-100 Ma) at 265-290deg.C in the prism. Early Jurassic (c. 189 Ma) zircon FT ages for sandstone beds from Arthur's Pass, the Rakaia valley, and the Hermitage (Mt Cook) are interpreted not to have experienced maximum temperatures above 210deg.C, and therefore cannot have been reduced as a result of partial annealing in the Torlesse prism. This is based on identification of a fossil Cretaceous, zircon FT, partial annealing zone in low-grade schists to the west, and the characteristics of the age data. The Early Jurassic zircon FT ages and the young component of 40Ar/39Ar mica ages are regarded therefore as detrital ages reflecting cooling in the source area, and constrain the maximum depositional age of parts of the Rakaia Terrane in mid Canterbury. The zircon FT data also show the initiation (c. 100 Ma) of marked and widespread Late Cretaceous cooling of Rakaia Terrane throughout Canterbury, which is attributed to uplift and erosion of inboard parts of the Torlesse prism due to continuing subduction accretion at its toe. The critical wedge concept is proposed as a new framework for investigating the development of the Torlesse Complex. The Rakaia Terrane may have formed the core of an accretionary wedge imbricated against the New Zealand margin during the Middle or Late Jurassic. Late Jurassic nonmarine sediments (e.g., Clent Hills Formation) accumulated upon the inner parts of the prism as it enlarged, emerged, and continued to be imbricated. Exhumation of Otago Schist from c. 135 Ma may mark the development of a balance (steady state) between sediments entering the prism at the toe and material exiting at the inboard margin. The enlargement of the area of exhumation to all of Canterbury from c. 100 Ma may reflect a dynamic response to widening of the prism through the accretion of Cretaceous sediments. The model of a dynamic critical wedge may help to explain the various expressions of the Rangitata Orogeny

    A Novel Device for the Measurement of the Mechanical and Magnetic Axes of Superconducting Magnet Assemblies for Accelerators

    Get PDF
    In the context of the LHC superconducting magnet production, especially for dipoles and quadrupoles due to their complexity, it is foreseen to perform acceptance tests, at an early production stage, to detect possible significant deviations from the design values. The knowledge of the magnetic field geometry is very important, especially for the main magnets. In order to get this information a new device has been conceived that measures the magnets at room temperature during different stages of construction. This device incorporates a sensitive measuring probe and an efficient data acquisition system because the coils are only powered at about 10-5 of the nominal D.C. current. It is dedicated to Quadrupole and Dipole (by using Quadrupole-Configured Dipole (QCD) transformation) magnets, but is also easily adaptable to higher order magnets (n = 3, 4 and 5) by specific orientation of the search coils. It is equipped with magnetic sensors (4 fixed tangential coils and AC excitation current for the magnet) and position sensors (3D-laser tracker and light reflector) that allow the simultaneous detection of the magnetic field axis and the cold bore axis. It is equipped as well with a set of 4 LEDs and associated with a CCD camera that allows both the measurement of the cold bore diameter and its position with respect to the mole. This paper describes the system and reports the first results measured on the pre-series magnets recently assembled

    Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    Get PDF
    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings

    Models and experimental results from the wide aperture Nb-Ti magnets for the LHC upgrade

    Full text link
    MQXC is a Nb-Ti quadrupole designed to meet the accelerator quality requirements needed for the phase-1 LHC upgrade, now superseded by the high luminosity upgrade foreseen in 2021. The 2-m-long model magnet was tested at room temperature and 1.9 K. The technology developed for this magnet is relevant for other magnets currently under development for the high-luminosity upgrade, namely D1 (at KEK) and the large aperture twin quadrupole Q4 (at CEA). In this paper we present MQXC test results, some of the specialized heat extraction features, spot heaters, temperature sensor mounting and voltage tap development for the special open cable insulation. We look at some problem solving with noisy signals, give an overview of electrical testing, look at how we calculate the coil resistance during at quench and show that the heaters are not working We describe the quench signals and its timing, the development of the quench heaters and give an explanation of an Excel quench calculation and its comparison including the good agreement with the MQXC test results. We propose an improvement to the magnet circuit design to reduce voltage to ground values by factor 2. The program is then used to predict quench Hot-Spot and Voltages values for the D1 dipole and the Q4 quadrupole.Comment: 8 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet, Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva, Switzerlan

    Curricular orientations to real-world contexts in mathematics

    Get PDF
    A common claim about mathematics education is that it should equip students to use mathematics in the ‘real world’. In this paper, we examine how relationships between mathematics education and the real world are materialised in the curriculum across a sample of eleven jurisdictions. In particular, we address the orientation of the curriculum towards application of mathematics, the ways that real-world contexts are positioned within the curriculum content, the ways in which different groups of students are expected to engage with real-world contexts, and the extent to which high-stakes assessments include real-world problem solving. The analysis reveals variation across jurisdictions and some lack of coherence between official orientations towards use of mathematics in the real world and the ways that this is materialised in the organisation of the content for students
    • 

    corecore