176 research outputs found
Limits and dynamics of stochastic neuronal networks with random heterogeneous delays
Realistic networks display heterogeneous transmission delays. We analyze here
the limits of large stochastic multi-populations networks with stochastic
coupling and random interconnection delays. We show that depending on the
nature of the delays distributions, a quenched or averaged propagation of chaos
takes place in these networks, and that the network equations converge towards
a delayed McKean-Vlasov equation with distributed delays. Our approach is
mostly fitted to neuroscience applications. We instantiate in particular a
classical neuronal model, the Wilson and Cowan system, and show that the
obtained limit equations have Gaussian solutions whose mean and standard
deviation satisfy a closed set of coupled delay differential equations in which
the distribution of delays and the noise levels appear as parameters. This
allows to uncover precisely the effects of noise, delays and coupling on the
dynamics of such heterogeneous networks, in particular their role in the
emergence of synchronized oscillations. We show in several examples that not
only the averaged delay, but also the dispersion, govern the dynamics of such
networks.Comment: Corrected misprint (useless stopping time) in proof of Lemma 1 and
clarified a regularity hypothesis (remark 1
Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis
We show how the Equation-Free approach for multi-scale computations can be
exploited to systematically study the dynamics of neural interactions on a
random regular connected graph under a pairwise representation perspective.
Using an individual-based microscopic simulator as a black box coarse-grained
timestepper and with the aid of simulated annealing we compute the
coarse-grained equilibrium bifurcation diagram and analyze the stability of the
stationary states sidestepping the necessity of obtaining explicit closures at
the macroscopic level. We also exploit the scheme to perform a rare-events
analysis by estimating an effective Fokker-Planck describing the evolving
probability density function of the corresponding coarse-grained observables
Rotating Convection in an Anisotropic System
We study the stability of patterns arising in rotating convection in weakly
anisotropic systems using a modified Swift-Hohenberg equation. The anisotropy,
either an endogenous characteristic of the system or induced by external
forcing, can stabilize periodic rolls in the K\"uppers-Lortz chaotic regime.
For the particular case of rotating convection with time-modulated rotation
where recently, in experiment, chiral patterns have been observed in otherwise
K\"uppers-Lortz-unstable regimes, we show how the underlying base-flow breaks
the isotropy, thereby affecting the linear growth-rate of convection rolls in
such a way as to stabilize spirals and targets. Throughout we compare
analytical results to numerical simulations of the Swift-Hohenberg equation
Hexagonal patterns in a model for rotating convection
We study a model equation that mimics convection under rotation in a fluid with temperature- dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary conditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that lead to a Kuppers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the amplitude equation as functions of the rotation rate. These equations describe hexagons and os- cillating hexagons quite well, and include the Busse?Heikes (BH) model [Busse & Heikes, 1980] as a particular case. The sideband instabilities as well as short wavelength instabilities of such hexagonal patterns are discussed and the threshold for oscillating hexagons is determined
Discovering universal statistical laws of complex networks
Different network models have been suggested for the topology underlying
complex interactions in natural systems. These models are aimed at replicating
specific statistical features encountered in real-world networks. However, it
is rarely considered to which degree the results obtained for one particular
network class can be extrapolated to real-world networks. We address this issue
by comparing different classical and more recently developed network models
with respect to their generalisation power, which we identify with large
structural variability and absence of constraints imposed by the construction
scheme. After having identified the most variable networks, we address the
issue of which constraints are common to all network classes and are thus
suitable candidates for being generic statistical laws of complex networks. In
fact, we find that generic, not model-related dependencies between different
network characteristics do exist. This allows, for instance, to infer global
features from local ones using regression models trained on networks with high
generalisation power. Our results confirm and extend previous findings
regarding the synchronisation properties of neural networks. Our method seems
especially relevant for large networks, which are difficult to map completely,
like the neural networks in the brain. The structure of such large networks
cannot be fully sampled with the present technology. Our approach provides a
method to estimate global properties of under-sampled networks with good
approximation. Finally, we demonstrate on three different data sets (C.
elegans' neuronal network, R. prowazekii's metabolic network, and a network of
synonyms extracted from Roget's Thesaurus) that real-world networks have
statistical relations compatible with those obtained using regression models
A Markovian event-based framework for stochastic spiking neural networks
In spiking neural networks, the information is conveyed by the spike times,
that depend on the intrinsic dynamics of each neuron, the input they receive
and on the connections between neurons. In this article we study the Markovian
nature of the sequence of spike times in stochastic neural networks, and in
particular the ability to deduce from a spike train the next spike time, and
therefore produce a description of the network activity only based on the spike
times regardless of the membrane potential process.
To study this question in a rigorous manner, we introduce and study an
event-based description of networks of noisy integrate-and-fire neurons, i.e.
that is based on the computation of the spike times. We show that the firing
times of the neurons in the networks constitute a Markov chain, whose
transition probability is related to the probability distribution of the
interspike interval of the neurons in the network. In the cases where the
Markovian model can be developed, the transition probability is explicitly
derived in such classical cases of neural networks as the linear
integrate-and-fire neuron models with excitatory and inhibitory interactions,
for different types of synapses, possibly featuring noisy synaptic integration,
transmission delays and absolute and relative refractory period. This covers
most of the cases that have been investigated in the event-based description of
spiking deterministic neural networks
Response of electrically coupled spiking neurons: a cellular automaton approach
Experimental data suggest that some classes of spiking neurons in the first
layers of sensory systems are electrically coupled via gap junctions or
ephaptic interactions. When the electrical coupling is removed, the response
function (firing rate {\it vs.} stimulus intensity) of the uncoupled neurons
typically shows a decrease in dynamic range and sensitivity. In order to assess
the effect of electrical coupling in the sensory periphery, we calculate the
response to a Poisson stimulus of a chain of excitable neurons modeled by
-state Greenberg-Hastings cellular automata in two approximation levels. The
single-site mean field approximation is shown to give poor results, failing to
predict the absorbing state of the lattice, while the results for the pair
approximation are in good agreement with computer simulations in the whole
stimulus range. In particular, the dynamic range is substantially enlarged due
to the propagation of excitable waves, which suggests a functional role for
lateral electrical coupling. For probabilistic spike propagation the Hill
exponent of the response function is , while for deterministic spike
propagation we obtain , which is close to the experimental values
of the psychophysical Stevens exponents for odor and light intensities. Our
calculations are in qualitative agreement with experimental response functions
of ganglion cells in the mammalian retina.Comment: 11 pages, 8 figures, to appear in the Phys. Rev.
Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling
This paper investigates the dependence of synchronization transitions of
bursting oscillations on the information transmission delay over scale-free
neuronal networks with attractive and repulsive coupling. It is shown that for
both types of coupling, the delay always plays a subtle role in either
promoting or impairing synchronization. In particular, depending on the
inherent oscillation period of individual neurons, regions of irregular and
regular propagating excitatory fronts appear intermittently as the delay
increases. These delay-induced synchronization transitions are manifested as
well-expressed minima in the measure for spatiotemporal synchrony. For
attractive coupling, the minima appear at every integer multiple of the average
oscillation period, while for the repulsive coupling, they appear at every odd
multiple of the half of the average oscillation period. The obtained results
are robust to the variations of the dynamics of individual neurons, the system
size, and the neuronal firing type. Hence, they can be used to characterize
attractively or repulsively coupled scale-free neuronal networks with delays.Comment: 15 pages, 9 figures; accepted for publication in PLoS ONE [related
work available at http://arxiv.org/abs/0907.4961 and
http://www.matjazperc.com/
Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model
Several firing patterns experimentally observed in neural populations have
been successfully correlated to animal behavior. Population bursting, hereby
regarded as a period of high firing rate followed by a period of quiescence, is
typically observed in groups of neurons during behavior. Biophysical
membrane-potential models of single cell bursting involve at least three
equations. Extending such models to study the collective behavior of neural
populations involves thousands of equations and can be very expensive
computationally. For this reason, low dimensional population models that
capture biophysical aspects of networks are needed.
\noindent The present paper uses a firing-rate model to study mechanisms that
trigger and stop transitions between tonic and phasic population firing. These
mechanisms are captured through a two-dimensional system, which can potentially
be extended to include interactions between different areas of the nervous
system with a small number of equations. The typical behavior of midbrain
dopaminergic neurons in the rodent is used as an example to illustrate and
interpret our results.
\noindent The model presented here can be used as a building block to study
interactions between networks of neurons. This theoretical approach may help
contextualize and understand the factors involved in regulating burst firing in
populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded
as separate file
- …