2 research outputs found

    Biological variation of measured and estimated glomerular filtration rate in patients with chronic kidney disease

    Get PDF
    When assessing changes in glomerular filtration rate (GFR) it is important to differentiate pathological change from intrinsic biological and analytical variation. GFR is measured using complex reference methods (e.g. iohexol clearance). In clinical practice measurement of creatinine and cystatin C is used in equations (e.g. Modification of Diet in Renal Disease [MDRD] or Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI]) to provide estimated GFR. We studied biological variability of measured and estimated GFR in twenty nephrology outpatients (10 male, 10 female; median age 71, range 50-80 years) with moderate CKD (GFR 30-59 mL/min/1.73 m2). Patients underwent weekly GFR measurement by iohexol clearance over four consecutive weeks. Simultaneously GFR was estimated using the MDRD, CKD-EPIcreatinine, CKD-EPIcystatinC and CKD-EPIcreatinine+cystatinC equations. Within-subject biological variation (CVI) expressed as a percentage [95% CI] for the MDRD (5.0% [4.3-6.1]), CKD-EPIcreatinine (5.3% [4.5-6.4]), CKD-EPIcystatinC (5.3% [4.5-6.5]), and CKD-EPIcreatinine+cystatinC (5.0% [4.3-6.2]) equations were broadly equivalent. CVI values for MDRD and CKD- EPIcreatinine+cystatinC were lower (p=0.027 and p=0.022 respectively) than that of measured GFR (6.7% [5.6-8.2]). Reference change values (RCV), the point at which a true change in a biomarker in an individual can be inferred to have occurred with 95% probability were calculated: using the MDRD equation, positive and negative RCVs were 15.1% and 13.1% respectively. If an individual’s baseline MDRD estimated GFR (mL/min/1.73 m2) was 59, significant increases or decreases would be to values >68 or <51 respectively. Within-subject variability of estimated GFR is lower than measured GFR. RCVs can be used to understand GFR changes in clinical practice

    Ethnic differences in cellular and humoral immune responses to SARS-CoV-2 vaccination in UK healthcare workers: a cross-sectional analysis

    No full text
    Background Few studies have compared SARS-CoV-2 vaccine immunogenicity by ethnic group. We sought to establish whether cellular and humoral immune responses to SARS-CoV-2 vaccination differ according to ethnicity in UK Healthcare workers (HCWs). Methods In this cross-sectional analysis, we used baseline data from two immunological cohort studies conducted in HCWs in Leicester, UK. Blood samples were collected between March 3, and September 16, 2021. We excluded HCW who had not received two doses of SARS-CoV-2 vaccine at the time of sampling and those who had serological evidence of previous SARS-CoV-2 infection. Outcome measures were SARS-CoV-2 spike-specific total antibody titre, neutralising antibody titre and ELISpot count. We compared our outcome measures by ethnic group using univariable (t tests and rank-sum tests depending on distribution) and multivariable (linear regression for antibody titres and negative binomial regression for ELISpot counts) tests. Multivariable analyses were adjusted for age, sex, vaccine type, length of interval between vaccine doses and time between vaccine administration and sample collection and expressed as adjusted geometric mean ratios (aGMRs) or adjusted incidence rate ratios (aIRRs). To assess differences in the early immune response to vaccination we also conducted analyses in a subcohort who provided samples between 14 and 50 days after their second dose of vaccine. Findings The total number of HCWs in each analysis were 401 for anti-spike antibody titres, 345 for neutralising antibody titres and 191 for ELISpot. Overall, 25.4% (19.7% South Asian and 5.7% Black/Mixed/Other) were from ethnic minority groups. In analyses including the whole cohort, neutralising antibody titres were higher in South Asian HCWs than White HCWs (aGMR 1.47, 95% CI [1.06–2.06], P = 0.02) as were T cell responses to SARS-CoV-2 S1 peptides (aIRR 1.75, 95% CI [1.05–2.89], P = 0.03). In a subcohort sampled between 14 and 50 days after second vaccine dose, SARS-CoV-2 spike-specific antibody and neutralising antibody geometric mean titre (GMT) was higher in South Asian HCWs compared to White HCWs (9616 binding antibody units (BAU)/ml, 95% CI [7178–12,852] vs 5888 BAU/ml [5023–6902], P = 0.008 and 2851 95% CI [1811–4487] vs 1199 [984–1462], P Interpretation This study provides evidence that, in an infection naïve cohort, humoral and cellular immune responses to SARS-CoV-2 vaccination are stronger in South Asian HCWs than White HCWs. These differences are most clearly seen in the early period following vaccination. Further research is required to understand the underlying mechanisms, whether differences persist with further exposure to vaccine or virus, and the potential impact on vaccine effectiveness.</p
    corecore