1,219 research outputs found

    Tight junction CLDN2 gene is a direct target of the vitamin D receptor

    Get PDF
    The breakdown of the intestinal barrier is a common manifestation of many diseases. Recent evidence suggests that vitamin D and its receptor VDR may regulate intestinal barrier function. Claudin-2 is a tight junction protein that mediates paracellular water transport in intestinal epithelia, rendering them "leaky". Using whole body VDR(-/-) mice, intestinal epithelial VDR conditional knockout (VDR(ΔIEC)) mice, and cultured human intestinal epithelial cells, we demonstrate here that the CLDN2 gene is a direct target of the transcription factor VDR. The Caudal-Related Homeobox (Cdx) protein family is a group of the transcription factor proteins which bind to DNA to regulate the expression of genes. Our data showed that VDR-enhances Claudin-2 promoter activity in a Cdx1 binding site-dependent manner. We further identify a functional vitamin D response element (VDRE) 5΄-AGATAACAAAGGTCA-3΄ in the Cdx1 site of the Claudin-2 promoter. It is a VDRE required for the regulation of Claudin-2 by vitamin D. Absence of VDR decreased Claudin-2 expression by abolishing VDR/promoter binding. In vivo, VDR deletion in intestinal epithelial cells led to significant decreased Claudin-2 in VDR(-/-) and VDR(ΔIEC) mice. The current study reveals an important and novel mechanism for VDR by regulation of epithelial barriers.status: publishe

    Protein Kinase B (Akt) Promotes Pathological Angiogenesis in Murine Model of Oxygen-Induced Retinopathy

    Get PDF
    Akt, or protein kinase B, is an important signaling molecule that modulates many cellular processes such as cell growth, survival, and metabolism. However, the vivo roles and effectors of Akt in retinal angiogenesis are not explicitly clear. We therefore detected the expression of Akt using Western blotting or RT-PCR technologies in an animal model of oxygen-induced retinopathy, and investigated the effects of recombinant Akt on inhibiting vessels loss and Akt inhibitor on suppressing experimental retinal neovascularization in this model. We showed that in the hyperoxic phase of oxygen-induced retinopathy, the expression of Akt was greatly suppressed. In the hypoxic phase, the expression of Akt was increased dramatically. No significant differences were found in normoxic groups. Compared with control groups, administration of the recombinant Akt in the first phase of retinopathy markedly reduced capillary-free areas, while the administration of the Akt inhibitor in the second phase of retinopathy significantly decreased retinal neovascularization but capillary-free areas. These results indicate that Akt play a critical role in the pathological process (vessels loss and neovascularization) of mouse model of oxygen-induced retinopathy, which may provide a valubale therapeutic tool for ischemic-induced retinal diseases

    Highly Variable Recessive Lthal or Nearly Lethal Mutation Rates During Germ-Line Development of Male Drosophila Melanogaster

    Get PDF
    Each cell of higher organism adults is derived from a fertilized egg through a series of divisions, during which mutations can occur. Both the rate and timing of mutations can have profound impacts on both the individual and the population, because mutations that occur at early cell divisions will affect more tissues and are more likely to be transferred to the next generation. Using large-scale multigeneration screening experiments for recessive lethal or nearly lethal mutations of Drosophila melanogaster and recently developed statistical analysis, we show for male D. melanogaster that (i) mutation rates (for recessive lethal or nearly lethal) are highly variable during germ cell development; (ii) first cell cleavage has the highest mutation rate, which drops substantially in the second cleavage or the next few cleavages; (iii) the intermediate stages, after a few cleavages to right before spermatogenesis, have at least an order of magnitude smaller mutation rate; and (iv) spermatogenesis also harbors a fairly high mutation rate. Because germ-line lineage shares some (early) cell divisions with somatic cell lineage, the first conclusion is readily extended to a somatic cell lineage. It is conceivable that the first conclusion is true for most (if not all) higher organisms, whereas the other three conclusions are widely applicable, although the extent may differ from species to species. Therefore, conclusions or analyses that are based on equal mutation rates during development should be taken with caution. Furthermore, the statistical approach developed can be adopted for studying other organisms, including the human germ-line or somatic mutational patterns

    Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction

    Get PDF
    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson {\it et al.} [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fan-like electron outflow region including three well-collimated electron jets appears. The (>1>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS

    cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma

    Get PDF
    BACKGROUND: Recurrent non-random genomic alterations are the hallmarks of cancer and the characterization of these imbalances is critical to our understanding of tumorigenesis and cancer progression. RESULTS: We performed array-comparative genomic hybridization (A-CGH) on cDNA microarrays containing 42,000 elements in neuroblastoma (NB). We found that only two chromosomes (2p and 12q) had gene amplifications and all were in the MYCN amplified samples. There were 6 independent non-contiguous amplicons (10.4–69.4 Mb) on chromosome 2, and the largest contiguous region was 1.7 Mb bounded by NAG and an EST (clone: 757451); the smallest region was 27 Kb including an EST (clone: 241343), NCYM, and MYCN. Using a probabilistic approach to identify single copy number changes, we systemically investigated the genomic alterations occurring in Stage 1 and Stage 4 NBs with and without MYCN amplification (stage 1-, 4-, and 4+). We have not found genomic alterations universally present in all (100%) three subgroups of NBs. However we identified both common and unique patterns of genomic imbalance in NB including gain of 7q32, 17q21, 17q23-24 and loss of 3p21 were common to all three categories. Finally we confirm that the most frequent specific changes in Stage 4+ tumors were the loss of 1p36 with gain of 2p24-25 and they had fewer genomic alterations compared to either stage 1 or 4-, indicating that for this subgroup of poor risk NB requires a smaller number of genomic changes are required to develop the malignant phenotype. CONCLUSIONS: cDNA A-CGH analysis is an efficient method for the detection and characterization of amplicons. Furthermore we were able to detect single copy number changes using our probabilistic approach and identified genomic alterations specific to stage and MYCN amplification

    Pattern of Mutation Rates in the Germline of Drosophila Melanogaster Males From a Large-Scale Mutation Screening Experiment

    Get PDF
    The sperm or eggs of sexual organisms go through a series of cell divisions from the fertilized egg; mutations can occur at each division. Mutations in the lineage of cells leading to the sperm or eggs are of particular importance because many such mutations may be shared by somatic tissues and also may be inherited, thus having a lasting consequence. For decades, little has been known about the pattern of the mutation rates along the germline development. Recently it was shown from a small portion of data that resulted from a large-scale mutation screening experiment that the rates of recessive lethal or nearly lethal mutations differ dramatically during the germline development of Drosophila melanogaster males. In this paper the full data set from the experiment and its analysis are reported by taking advantage of a recent methodologic advance. By analyzing the mutation patterns with different levels of recessive lethality, earlier published conclusions based on partial data are found to remain valid. Furthermore, it is found that for most nearly lethal mutations, the mutation rate at the first cell division is even greater than previous thought compared with those at other divisions. There is also some evidence that the mutation rate at the second division decreases rapidly but is still appreciably greater than those for the rest of the cleavage stage. The mutation rate at spermatogenesis is greater than late cleavage and stem-cell stages, but there is no evidence that rates are different among the five cell divisions of the spermatogenesis. We also found that a modestly biased sampling, leading to slightly more primordial germ cells after the eighth division than those reported in the literature, provides the best fit to the data. These findings provide conceptual and numerical basis for exploring the consequences of differential mutation rates during individual development
    • …
    corecore