1,117 research outputs found
Complete Characterization of Quantum-Optical Processes
The technologies of quantum information and quantum control are rapidly
improving, but full exploitation of their capabilities requires complete
characterization and assessment of processes that occur within quantum devices.
We present a method for characterizing, with arbitrarily high accuracy, any
quantum optical process. Our protocol recovers complete knowledge of the
process by studying, via homodyne tomography, its effect on a set of coherent
states, i.e. classical fields produced by common laser sources. We demonstrate
the capability of our protocol by evaluating and experimentally verifying the
effect of a test process on squeezed vacuum.Comment: 5 pages, 4 figure
Excited States in Warm and Hot Dense Matter
Accurate modeling of warm and hot dense matter is challenging in part due to
the multitude of excited states that must be considered. In thermal density
functional theory, these excited states are averaged over to produce a single,
averaged, thermal ground state. Here we present a variational framework and
model that includes explicit excited states. In this framework an excited state
is defined by a set of effective one-electron occupation factors and the
corresponding energy is defined by the effective one-body energy with an
exchange and correlation term. The variational framework is applied to an
atom-in-plasma model (a generalization of the so-called average atom model).
Comparisons with a density functional theory based average atom model generally
reveal good agreement in the calculated pressure, but the new model also gives
access to the excitation energies and charge state distributions
Random perfect lattices and the sphere packing problem
Motivated by the search for best lattice sphere packings in Euclidean spaces
of large dimensions we study randomly generated perfect lattices in moderately
large dimensions (up to d=19 included). Perfect lattices are relevant in the
solution of the problem of lattice sphere packing, because the best lattice
packing is a perfect lattice and because they can be generated easily by an
algorithm. Their number however grows super-exponentially with the dimension so
to get an idea of their properties we propose to study a randomized version of
the algorithm and to define a random ensemble with an effective temperature in
a way reminiscent of a Monte-Carlo simulation. We therefore study the
distribution of packing fractions and kissing numbers of these ensembles and
show how as the temperature is decreased the best know packers are easily
recovered. We find that, even at infinite temperature, the typical perfect
lattices are considerably denser than known families (like A_d and D_d) and we
propose two hypotheses between which we cannot distinguish in this paper: one
in which they improve Minkowsky's bound phi\sim 2^{-(0.84+-0.06) d}, and a
competitor, in which their packing fraction decreases super-exponentially,
namely phi\sim d^{-a d} but with a very small coefficient a=0.06+-0.04. We also
find properties of the random walk which are suggestive of a glassy system
already for moderately small dimensions. We also analyze local structure of
network of perfect lattices conjecturing that this is a scale-free network in
all dimensions with constant scaling exponent 2.6+-0.1.Comment: 19 pages, 22 figure
Origin of atomic clusters during ion sputtering
Previous studies have shown that the size distributions of small clusters ( n<=40 n = number of atoms/cluster) generated by sputtering obey an inverse power law with an exponent between -8 and -4. Here we report electron microscopy studies of the size distributions of larger clusters ( n>=500) sputtered by high-energy ion impacts. These new measurements also yield an inverse power law, but one with an exponent of -2 and one independent of sputtering yield, indicating that the large clusters are produced when shock waves, generated by subsurface displacement cascades, ablate the surface
Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience.
To overcome the limitations of the state-of-the-art influenza surveillance systems in Europe, we established in 2008 a European-wide consortium aimed at introducing an innovative information and communication technology approach for a web-based surveillance system across different European countries, called Influenzanet. The system, based on earlier efforts in The Netherlands and Portugal, works with the participation of the population in each country to collect real-time information on the distribution of influenza-like illness cases through web surveys administered to volunteers reporting their symptoms (or lack of symptoms) every week during the influenza season. Such a large European-wide web-based monitoring infrastructure is intended to rapidly identify public health emergencies, contribute to understanding global trends, inform data-driven forecast models to assess the impact on the population, optimize the allocation of resources, and help in devising mitigation and containment measures. In this article, we describe the scientific and technological issues faced during the development and deployment of a flexible and readily deployable web tool capable of coping with the requirements of different countries for data collection, during either a public health emergency or an ordinary influenza season. Even though the system is based on previous successful experience, the implementation in each new country represented a separate scientific challenge. Only after more than 5 years of development are the existing platforms based on a plug-and-play tool that can be promptly deployed in any country wishing to be part of the Influenzanet network, now composed of The Netherlands, Belgium, Portugal, Italy, the UK, France, Sweden, Spain, Ireland, and Denmark
Rape with Extreme Violence: The New Pathology in South Kivu, Democratic Republic of Congo
Cathy Nangini and Denis Mukwege describe their work at the Panzi Hospital in the Democratic Republic of Congo, which treats women victims of rape with extreme violence that are often perpetrated at the hands of armed groups
Are there gender differences in the geography of alcohol-related mortality in Scotland? An ecological study
<b>Background</b>
There is growing concern about alcohol-related harm, particularly within Scotland which has some of the highest rates of alcohol-related death in western Europe. There are large gender differences in alcohol-related mortality rates in Scotland and in other countries, but the reasons for these differences are not clearly understood. In this paper, we aimed to address calls in the literature for further research on gender differences in the causes, contexts and consequences of alcohol-related harm. Our primary research question was whether the kind of social environment which tends to produce higher or lower rates of alcohol-related mortality is the same for both men and women across Scotland.
<b>Methods</b>
Cross-sectional, ecological design. A comparison was made between spatial variation in men's and women's age-standardised alcohol-related mortality rates in Scotland using maps, Moran's Index, linear regression and spatial analyses of residuals. Directly standardised mortality rates were derived from individual level records of death registration, 2000–2005 (n = 8685).
<b>Results</b>
As expected, men's alcohol-related mortality rate substantially exceeded women's and there was substantial spatial variation in these rates for both men and women within Scotland. However, there was little spatial variation in the relationship between men's and women's alcohol-mortality rates (r2 = 0.73); areas with relatively high rates of alcohol-related mortality for men tended also to have relatively high rates for women. In a small number of areas (8 out of 144) the relationship between men's and women's alcohol-related mortality rates was significantly different.
<b>Conclusion</b>
In as far as geographic location captures exposure to social and economic environment, our results suggest that the relationship between social and economic environment and alcohol-related harm is very similar for men and women. The existence of a small number of areas in which men's and women's alcohol-related mortality had an different relationship suggests that some places may have unusual drinking cultures. These might prove useful for further investigations into the factors which influence drinking behaviour in men and women
Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions
In order to identify and quantify key species associated with non-exhaust
emissions and exhaust vehicular emissions, a large comprehensive dataset of
particulate species has been obtained thanks to simultaneous near-road and
urban background measurements coupled with detailed traffic counts and
chassis dynamometer measurements of exhaust emissions of a few in-use
vehicles well-represented in the French fleet. Elemental carbon, brake-wear
metals (Cu, Fe, Sb, Sn, Mn), n-alkanes (C19-C26), light-molecular-weight
polycyclic aromatic hydrocarbons
(PAHs; pyrene, fluoranthene, anthracene) and two hopanes (17α21βnorhopane and
17α21βhopane) are strongly associated with the
road traffic. Traffic-fleet emission factors have been determined for all of
them and are consistent with most recent published equivalent data. When
possible, light-duty- and heavy-duty-traffic emission factors are also
determined. In the absence of significant non-combustion emissions, light-duty-traffic
emissions are in good agreement with emissions from chassis
dynamometer measurements. Since recent measurements in Europe including those
from this study are consistent, ratios involving copper (Cu∕Fe and Cu∕Sn)
could be used as brake-wear emissions tracers as long as brakes with Cu
remain in use. Near the Grenoble ring road, where the traffic was largely
dominated by diesel vehicles in 2011 (70 %), the OC∕EC ratio estimated for
traffic emissions was around 0.4. Although the use of quantitative data for
source apportionment studies is not straightforward for the identified
organic molecular markers, their presence seems to well-characterize fresh
traffic emissions.</p
- …