Accurate modeling of warm and hot dense matter is challenging in part due to
the multitude of excited states that must be considered. In thermal density
functional theory, these excited states are averaged over to produce a single,
averaged, thermal ground state. Here we present a variational framework and
model that includes explicit excited states. In this framework an excited state
is defined by a set of effective one-electron occupation factors and the
corresponding energy is defined by the effective one-body energy with an
exchange and correlation term. The variational framework is applied to an
atom-in-plasma model (a generalization of the so-called average atom model).
Comparisons with a density functional theory based average atom model generally
reveal good agreement in the calculated pressure, but the new model also gives
access to the excitation energies and charge state distributions