142 research outputs found

    The role of fetal, infant, and childhood nutrition in the timing of sexual maturation

    Get PDF
    Puberty is a crucial developmental stage in the life span, necessary to achieve reproductive and somatic maturity. Timing of puberty is modulated by and responds to central neurotransmitters, hormones, and environmental factors leading to hypothalamic-pituitary-gonadal axis maturation. The connection between hormones and nutrition during critical periods of growth, like fetal life or infancy, is fundamental for metabolic adaptation response and pubertal development control and prediction. Since birth weight is an important indicator of growth estimation during fetal life, restricted prenatal growth, such as intrauterine growth restriction (IUGR) and small for gestational age (SGA), may impact endocrine system, affecting pubertal development. Successively, lactation along with early life optimal nutrition during infancy and childhood may be important in order to set up timing of sexual maturation and provide successful reproduction at a later time. Sexual maturation and healthy growth are also influenced by nutrition requirements and diet composition. Early nutritional surveillance and monitoring of pubertal development is recommended in all children, particularly in those at risk, such as the ones born SGA and/or IUGR, as well as in the case of sudden weight gain during infancy. Adequate macro and micronutrient intake is essential for healthy growth and sexual maturity

    Gender-based differences in the clustering of metabolic syndrome factors in children and adolescents

    Get PDF
    We depicted gender-differences in metabolic syndrome (MS) clustering before and after puberty in pediatrics, in order to develop gender specific preventive strategies for childhood obesity. We considered 1079 children and adolescents (529 females and 550 males; mean age 11.5 \ub1 2.8 year). According to body mass index (BMI) percentiles the subjects were classified as normal weight BMI <75th, overweight BMI 75-95th and with obesity BMI >95th. MS was diagnosed when three of the following criteria for age and sex percentiles were met: BMI >95th, triglycerides (TGs) level >95th, high-density lipoprotein-cholesterol (HDL-c) level <5th, blood pressure (blood pressure) >95th percentile, fasting blood glucose (FBG) >100 mg/dL and/or homeostatic model assessment-insulin resistance (HOMA-IR) >97.5th percentile. The prevalence of dismetabolic factors was similar in both genders, except for pathological BP, which was higher in males (p = 0.02). MS was detected only in patients with obesity, with a higher prevalence in pubertal than late/post-pubertal subjects (p < 0.001), without any significant difference between gender. In pre-puberty, the most common MS combination was obesity (HBMI) + hypertension (HBP) + hyperglycemia/insulin resistance (HGLY/IR) followed by HBMI + low HDL-levels (LHDL) + HGLY/IR versus HBMI + HBP + HGLY/IR followed by HBMI + HBP + LHDL, respectively, in females and males. In the early and late/post-pubertal periods, the most prevalent combination remained similar to pre-puberty, additionally in both sexes other combinations, such as HBMI + HTG + HBP + HGLY/IR, HBMI + HBP + LHDL + HGLY/IR, HBMI + HTG + LHDL + HGLY/IR and HBMI + HTG + LHDL + HBP + HGLY/IR were also detected, differently distributed in males and females. We confirm that MS is an important consequence related to obesity, particularly in the post-puberty stage. Some gender-based differences should be considered early in order to identify specific preventive and treatment strategies

    Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor

    Get PDF
    Immunoglobulin G (IgG), a type of antibody, represents approximately 75% of serum antibodies in humans, and is the most common type of antibody found in blood circulation. Consequently, the development of simple, fast and reliable systems for IgG detection, which can be achieved using electrochemical sandwich-type immunosensors, is of considerable interest. In this study we have developed an immunosensor for human (H)-IgG using an inexpensive and very simple fabrication method based on ZnO nanorods (NRs) obtained through the electrodeposition of ZnO. The ZnO NRs were treated by electrodepositing a layer of reduced graphene oxide (rGO) to ensure an easy immobilization of the antibodies. On Indium Tin Oxide supported on Polyethylene Terephthalate/ZnO NRs/rGO substrate, the sandwich configuration of the immunosensor was built through different incubation steps, which were all optimized. The immunosensor is electrochemically active thanks to the presence of gold nanoparticles tagging the secondary antibody. The immunosensor was used to measure the current density of the hydrogen development reaction which is indirectly linked to the concentration of H-IgG. In this way the calibration curve was constructed obtaining a logarithmic linear range of 10–1000 ng/mL with a detection limit of few ng/mL and good sensitivity

    Levothyroxine Monotherapy Cannot Guarantee Euthyroidism in All Athyreotic Patients

    Get PDF
    CONTEXT: Levothyroxine monotherapy is the treatment of choice for hypothyroid patients because peripheral T4 to T3 conversion is believed to account for the overall tissue requirement for thyroid hormones. However, there are indirect evidences that this may not be the case in all patients. OBJECTIVE: To evaluate in a large series of athyreotic patients whether levothyroxine monotherapy can normalize serum thyroid hormones and thyroid-pituitary feedback. DESIGN: Retrospective study. SETTING: Academic hospital. PATIENTS: 1,811 athyreotic patients with normal TSH levels under levothyroxine monotherapy and 3,875 euthyroid controls. MEASUREMENTS: TSH, FT4 and FT3 concentrations by immunoassays. RESULTS: FT4 levels were significantly higher and FT3 levels were significantly lower (p<0.001 in both cases) in levothyroxine-treated athyreotic patients than in matched euthyroid controls. Among the levothyroxine-treated patients 15.2% had lower serum FT3 and 7.2% had higher serum FT4 compared to euthyroid controls. A wide range of FT3/FT4 ratios indicated a major heterogeneity in the peripheral T3 production capacity in different individuals. The correlation between thyroid hormones and serum TSH levels indicated an abnormal feedback mechanism in levothyroxine-treated patients. CONCLUSIONS: Athyreotic patients have a highly heterogeneous T3 production capacity from orally administered levothyroxine. More than 20% of these patients, despite normal TSH levels, do not maintain FT3 or FT4 values in the reference range, reflecting the inadequacy of peripheral deiodination to compensate for the absent T3 secretion. The long-term effects of chronic tissue exposure to abnormal T3/T4 ratio are unknown but a sensitive marker of target organ response to thyroid hormones (serum TSH) suggests that this condition causes an abnormal pituitary response. A more physiological treatment than levothyroxine monotherapy may be required in some hypothyroid patients

    Endothelial Function is Not Changed during Short-Term Withdrawal of Thyroxine in Patients with Differentiated Thyroid Cancer and Low Cardiovascular Risk

    Get PDF
    PURPOSE: The incidence of differentiated thyroid cancer is increasing in young adults and females in Korea. Some of them experience short-term hypothyroidism in preparation for radioiodine (RAI) therapy, which can have a deleterious effect on the cardiovascular system. However, it is not clear if short-term hypothyroidism induces endothelial dysfunction in patients with low cardiovascular risk. Therefore, the aim of this study was to investigate whether short-term hypothyroidism is associated with endothelial dysfunction in patients with low cardiovascular risk. MATERIALS AND METHODS: To evaluate the effect of short-term hypothyroidism on endothelial function in this group, we recruited fifteen female patients with low cardiovascular risk. We analyzed clinical, biochemical, and cardiovascular parameters at four time points: the last day on levothyroxine (LT4) at their usual thyroid-stimulating hormone (TSH)-suppressive doses (P1), 7 days (P2) and 4 weeks (P3) after withdrawal of LT4, and 8 weeks (P4) after replacement of the previous dose of LT4. A high resolution ultrasound was used to measure brachial artery diameter at rest, after reactive hyperemia, and after sublingual nitroglycerin. RESULTS: During short-term hypothyroidism (P3), serum concentrations of total cholesterol and low-density lipoprotein (LDL)-cholesterol were increased (p < 0.001 for each period). In spite of having worsened lipid states, serum high sensitivity C-reactive protein or flow-mediated vasodilatation, which is one of the surrogate markers of the endothelial function, did not change during short-term hypothyroidism. CONCLUSION: Short-term hypothyroidism induced worsening of metabolic parameters, but not enough to induce the endothelial dysfunction in patients with low cardiovascular riskope

    Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Get PDF
    Background - Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results - Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions - Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction
    corecore