2,060 research outputs found
Allison Brown, The Return of Lucretius to Renaissance Florence, Cambridge, Harvard University Press, 2010
Sin resume
Interactive Chemical Reactivity Exploration
Elucidating chemical reactivity in complex molecular assemblies of a few
hundred atoms is, despite the remarkable progress in quantum chemistry, still a
major challenge. Black-box search methods to find intermediates and
transition-state structures might fail in such situations because of the
high-dimensionality of the potential energy surface. Here, we propose the
concept of interactive chemical reactivity exploration to effectively introduce
the chemist's intuition into the search process. We employ a haptic pointer
device with force-feedback to allow the operator the direct manipulation of
structures in three dimensions along with simultaneous perception of the
quantum mechanical response upon structure modification as forces. We elaborate
on the details of how such an interactive exploration should proceed and which
technical difficulties need to be overcome. All reactivity-exploration concepts
developed for this purpose have been implemented in the Samson programming
environment.Comment: 36 pages, 14 figure
High-spin structures of 136Cs
Odd-odd 136Cs nuclei have been produced in the 18O + 208Pb and 12C + 238U
fusion-fission reactions and their gamma rays studied with the Euroball array.
The high-spin level scheme has been built up to ~ 4.7 MeV excitation energy and
spin I ~ 16 hbar from the triple gamma-ray coincidence data. The configurations
of the three structures observed above ~ 2 MeV excitation energy are first
discussed by analogy with the proton excitations identified in the semi-magic
137Cs nucleus, which involve the three high-j orbits lying above the Z=50 gap,
pi g_{7/2}, pi d_{5/2} and pi h_{11/2}. This is confirmed by the results of
shell-model calculations performed in this work.Comment: 6 pages, 4 figures, 3 table
Dewetting of Glassy Polymer Films
Dynamics and morphology of hole growth in a film of power hardening
viscoplastic solid (yield stress ~ [strain-rate]^n) is investigated. At
short-times the growth is exponential and depends on the initial hole size. At
long-times, for n > 1/3, the growth is exponential with a different exponent.
However, for n < 1/3, the hole growth slows; the hole radius approaches an
asymptotic value as time tends to infinity. The rim shape is highly asymmetric,
the height of which has a power law dependence on the hole radius (exponent
close to unity for 0.25 < n < 0.4). The above results explain recent intriguing
experiments of Reiter, Phys. Rev. Lett, 87, 186101 (2001).Comment: 4 pages, 5 figures, RevTe
Large Deformation Effects in the N = Z 44Ti Compound Nucleus
The N = Z 44Ti* nucleus has been populated in Fusion Evaporation process at
very high excitation energies and angular momenta using two entrance channels
with different mass-asymmetry. The deformation effects in the rapidly rotating
nuclei have been investigated through the energy distribution of the
alpha-particle combined to statistical-model calculations. In the case of
low-multiplicity events, the ratio between first particle emitted has been
measured and shows significant disagreement with the predictions of the
statistical-model. This may explain The large discrepancies observed in proton
energy spectra measured in previous experiments performed in the same mass
region.Comment: Proceeding of the 10th International Conference on Nuclear Reaction
Mechanisms, Varenna Italy, June 9-13 2003. 10 pages, 6 figures, 1 tabl
Dewetting of thin polymer films near the glass transition
Dewetting of ultra-thin polymer films near the glass transition exhibits
unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)].
We present here the first theoretical attempt to understand these features,
focusing on the shear-thinning behaviour of these films. We analyse the profile
of the dewetting film, and characterize the time evolution of the dry region
radius, , and of the rim height, . After a transient time
depending on the initial thickness, grows like while
increases like . Different regimes of growth are
expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review
Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88,
196101 (2002
Observation of the lowest energy gamma-ray in any superdeformed nucleus : 196Bi
New results on the superdeformed Bi nucleus a re reported. We have
observed with the EUROBALL IV -ray spectrometer array a superdeformed
trans ition of 124 keV which is the lowest observed energy -ray in any
superdeformed nucleus. We have de velopped microscopic cranked
Hartree-Fock-Bogoliubov calculations using the SLy4 effective force and a
realistic surface p airing which strongly support the
([651]1/2[752]5/2) assignment of this su
perdeformed band
Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force
We discuss the ergodic properties of quasi-Markovian stochastic differential
equations, providing general conditions that ensure existence and uniqueness of
a smooth invariant distribution and exponential convergence of the evolution
operator in suitably weighted spaces, which implies the validity
of central limit theorem for the respective solution processes. The main new
result is an ergodicity condition for the generalized Langevin equation with
configuration-dependent noise and (non-)conservative force
Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization.
BACKGROUND: Large-scale high throughput studies using microarray technology have established that copy number variation (CNV) throughout the genome is more frequent than previously thought. Such variation is known to play an important role in the presence and development of phenotypes such as HIV-1 infection and Alzheimer's disease. However, methods for analyzing the complex data produced and identifying regions of CNV are still being refined. RESULTS: We describe the presence of a genome-wide technical artifact, spatial autocorrelation or 'wave', which occurs in a large dataset used to determine the location of CNV across the genome. By removing this artifact we are able to obtain both a more biologically meaningful clustering of the data and an increase in the number of CNVs identified by current calling methods without a major increase in the number of false positives detected. Moreover, removing this artifact is critical for the development of a novel model-based CNV calling algorithm - CNVmix - that uses cross-sample information to identify regions of the genome where CNVs occur. For regions of CNV that are identified by both CNVmix and current methods, we demonstrate that CNVmix is better able to categorize samples into groups that represent copy number gains or losses. CONCLUSION: Removing artifactual 'waves' (which appear to be a general feature of array comparative genomic hybridization (aCGH) datasets) and using cross-sample information when identifying CNVs enables more biological information to be extracted from aCGH experiments designed to investigate copy number variation in normal individuals.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Energy partition in Sapphire and BGO scintillating bolometers
International audienceScintillating bolometers are particle detectors with a high particle discrimination power with many applications in nuclear and particle physics. This discrimination power is based on the different scintillation yield for different particles, and is strongly dependent on the target used. At the very low temperatures required for the operation of the bolometers, very few data about the scintillation yields are available. In this paper we present estimates of absolute light yields and energy partition among heat, light and trapping channels in Sapphire (AlO) and BGO (BiGeO) scintillating bolometers operated at 20 mK. The estimate relies on the observed negative correlation between the light and heat signals produced by γ-ray absorption in scintillating bolometers and on the study of the x-ray stimulated luminescence properties of BGO at temperatures down to 77 K
- …
