149 research outputs found

    The pseudogap in underdoped high Tc superconductors in the framework of the Boson Fermion model

    Full text link
    The question of whether the pseudogap in high TcT_c cuprates is related to super conducting precursor effects or to the existence of extrinsic bosonic massive excitations is investigated on the basis of the Boson-Fermion model. The characteristic three peak structure of the electronic spectral function and the temperature dependent Fermi vector derived here are signatures for a two component scenario which can be tested by ARPES and BIS experiments.Comment: revtex version with 3 eps figures. Revised version to appear in Phys. Rev. B. 4 c programs adde

    The boson-fermion model: An exact diagonalization study

    Full text link
    The main features of a generic boson-fermion scenario for electron pairing in a many-body correlated fermionic system are: i) a cross-over from a poor metal to an insulator and finally a superconductor as the temperature decreases, ii) the build-up of a finite amplitude of local electron pairing below a certain temperature T∗T^*, followed by the onset of long-range phase correlations among electron pairs below a second characteristic temperature TϕT_{\phi}, iii) the opening of a pseudogap in the DOS of the electrons below T∗T^*, rendering these electrons poorer and poorer quasi-particles as the temperature decreases, with the electron transport becoming ensured by electron pairs rather than by individual electrons. A number of these features have been so far obtained on the basis of different many-body techniques, all of which have their built-in shortcomings in the intermediate coupling regime, which is of interest here. In order to substantiate these features, we investigate them on the basis of an exact diagonalization study on rings up to eight sites. Particular emphasis has been put on the possibility of having persistent currents in mesoscopic rings tracking the change-over from single- to two-particle transport as the temperature decreases and the superconducting state is approached.Comment: 7 pages, 8 figures; to be published in Phys. Rev.

    Dynamical Properties of small Polarons

    Full text link
    On the basis of the two-site polaron problem, which we solve by exact diagonalization, we analyse the spectral properties of polaronic systems in view of discerning localized from itinerant polarons and bound polaron pairs from an ensemble of single polarons. The corresponding experimental techniques for that concern photoemission and inverse photoemission spectroscopy. The evolution of the density of states as a function of concentration of charge carriers and strength of the electron-phonon interaction clearly shows the opening up of a gap between single polaronic and bi-polaronic states, in analogy to the Hubbard problem for strongly correlated electron systems. The crossover regime between adiabatic and anti-adiabatic small polarons is triggered by two characteristic time scales: the renormalized electron hopping rate and the renormalized vibrational frequency becoming equal. This crossover regime is then characterized by temporarily alternating self- localization and delocalization of the charge carriers which is accompanied by phase slips in the charge and molecular deformation oscillations and ultimately leads to a dephasing between these two dynamical components of the polaron problem. We visualize these features by a study of the temporal evolution of the charge redistribution and the change in molecular deformations. The spectral and dynamical properties of polarons discussed here are beyond the applicability of the standard Lang Firsov approach to the polaron problem.Comment: 31 pages and 23 figs.(eps), accepted in the Phys. Rev.

    Resonating bipolarons

    Full text link
    Electrons coupled to local lattice deformations end up in selftrapped localized molecular states involving their binding into bipolarons when the coupling is stronger than a certain critical value. Below that value they exist as essentially itinerant electrons. We propose that the abrupt crossover between the two regimes can be described by resonant pairing similar to the Feshbach resonance in binary atomic collision processes. Given the intrinsically local nature of the exchange of pairs of itinerant electrons and localized bipolarons, we demonstrate the occurrence of such a resonance on a finite-size cluster made out of metallic atoms surrounding a polaronic ligand center.Comment: 7 pages, 4 figures, to be published in Europhysics Letter

    Stripe ordering and two-gap model for underdoped cuprates

    Full text link
    The evidence of edge-gaps around the M-points in the metallic state of underdoped cuprates has triggered a very active debate on their origin. We first consider the possibility that this spectroscopic feature results from a quasi-static charge ordering taking place in the underdoped regime. It comes out that to explain the coexistence of gaps and arcs on the Fermi surface the charge modulation should be in an eggbox form. In the lack of evidences for that, we then investigate the local pairing induced by charge-stripe fluctuations. A proper description of the strong anisotropy of both the interactions and the Fermi velocities requires a two-gap model for pairing. We find that a gap due to incoherent pairing forms near the M-points, while coherence is established by the stiffness of the pairing near the nodal points. The model allows for a continuos evolution from a pure BCS pairing (over- and optimally doped regime) to a mixed boson-fermion model (heavily underdoped regime).Comment: 4 pages, Proceedings of M2S-HTS

    Upward curvature of the upper critical field in the Boson--Fermion model

    Full text link
    We report on a non-conventional temperature behavior of the upper critical field (Hc2(T)H_{c2}(T)) which is found for the Boson-Fermion (BF) model. We show that the BF model properly reproduces two crucial features of the experimental data obtained for high-TcT_c superconductors: Hc2(T)H_{c2}(T) does not saturate at low temperatures and has an upward curvature. Moreover, the calculated upper critical field fits very well the experimental results. This agreement holds also for overdoped compounds, where a purely bosonic approach is not applicable.Comment: 4 pages, 3 figures, revte

    Influence of electron-phonon interaction on superexchange

    Full text link
    We investigate the influence of electron-phonon coupling on the superexchange interaction of magnetic insulators. Both the Holstein-Hubbard model where the phonons couple to the electron density, as well as an extended Su, Schrieffer, Heeger model where the coupling arises from modulation of the overlap integral are studied using exact diagonalization and perturbative methods. In all cases for both the adiabatic (but non-zero frequency) and anti-adiabatic parameter regions the electron-phonon coupling is found to enhance the superexchange.Comment: 14 pages+4 postscript figure

    Charge and spin inhomogeneity as a key to the physics of the high Tc cuprates

    Full text link
    We present a coherent scenario for the physics of cuprate superconductors, which is based on a charge-driven inhomogeneity, i.e. the ``stripe phase''. We show that spin and charge critical fluctuations near the stripe instability of strongly correlated electron systems provide an effective interaction between the quasiparticles, which is strongly momentum, frequency, temperature and doping dependent. This accounts for the various phenomena occurring in the overdoped, optimally and underdoped regimes both for the normal and the superconductive phase.Comment: 6 pages, 1 enclosed figure, proceedings of LT2

    Density Matrix Approach to Local Hilbert Space Reduction

    Full text link
    We present a density matrix approach for treating systems with a large or infinite number of degrees of freedom per site with exact diagonalization or the density matrix renormalization group. The method is demonstrated on the 1D Holstein model of electrons coupled to Einstein phonons. In this system, two or three optimized phonon modes per site give results as accurate as with 10-100 bare phonon levels per site.Comment: 4 pages, 4 figure

    Analyzing the success of T-matrix diagrammatic theories in representing a modified Hubbard model

    Full text link
    We present a systematic study of various forms of renormalization that can be applied in the calculation of the self-energy of the Hubbard model within the T-matrix approximation. We compare the exact solutions of the attractive and repulsive Hubbard models, for linear chains of lengths up to eight sites, with all possible taxonomies of the T-matrix approximation. For the attractive Hubbard model, the success of a minimally self-consistent theory found earlier in the atomic limit (Phys. Rev. B 71, 155111 (2005)) is not maintained for finite clusters unless one is in the very strong correlation limit. For the repulsive model, in the weak correlation limit at low electronic densities -- that is, where one would expect a self-consistent T-matrix theory to be adequate -- we find the fully renormalized theory to be most successful. In our studies we employ a modified Hubbard interaction that eliminates all Hartree diagrams, an idea which was proposed earlier (Phys. Rev. B 63, 035104 (2000)).Comment: Includes modified discussion of 1st-order phase transition. Accepted for publication in J. Phys.: Condensed Matte
    • …
    corecore