149 research outputs found
The pseudogap in underdoped high Tc superconductors in the framework of the Boson Fermion model
The question of whether the pseudogap in high cuprates is related to
super conducting precursor effects or to the existence of extrinsic bosonic
massive excitations is investigated on the basis of the Boson-Fermion model.
The characteristic three peak structure of the electronic spectral function and
the temperature dependent Fermi vector derived here are signatures for a two
component scenario which can be tested by ARPES and BIS experiments.Comment: revtex version with 3 eps figures. Revised version to appear in Phys.
Rev. B. 4 c programs adde
The boson-fermion model: An exact diagonalization study
The main features of a generic boson-fermion scenario for electron pairing in
a many-body correlated fermionic system are: i) a cross-over from a poor metal
to an insulator and finally a superconductor as the temperature decreases, ii)
the build-up of a finite amplitude of local electron pairing below a certain
temperature , followed by the onset of long-range phase correlations among
electron pairs below a second characteristic temperature , iii) the
opening of a pseudogap in the DOS of the electrons below , rendering these
electrons poorer and poorer quasi-particles as the temperature decreases, with
the electron transport becoming ensured by electron pairs rather than by
individual electrons. A number of these features have been so far obtained on
the basis of different many-body techniques, all of which have their built-in
shortcomings in the intermediate coupling regime, which is of interest here. In
order to substantiate these features, we investigate them on the basis of an
exact diagonalization study on rings up to eight sites. Particular emphasis has
been put on the possibility of having persistent currents in mesoscopic rings
tracking the change-over from single- to two-particle transport as the
temperature decreases and the superconducting state is approached.Comment: 7 pages, 8 figures; to be published in Phys. Rev.
Dynamical Properties of small Polarons
On the basis of the two-site polaron problem, which we solve by exact
diagonalization, we analyse the spectral properties of polaronic systems in
view of discerning localized from itinerant polarons and bound polaron pairs
from an ensemble of single polarons. The corresponding experimental techniques
for that concern photoemission and inverse photoemission spectroscopy. The
evolution of the density of states as a function of concentration of charge
carriers and strength of the electron-phonon interaction clearly shows the
opening up of a gap between single polaronic and bi-polaronic states, in
analogy to the Hubbard problem for strongly correlated electron systems. The
crossover regime between adiabatic and anti-adiabatic small polarons is
triggered by two characteristic time scales: the renormalized electron hopping
rate and the renormalized vibrational frequency becoming equal. This crossover
regime is then characterized by temporarily alternating self- localization and
delocalization of the charge carriers which is accompanied by phase slips in
the charge and molecular deformation oscillations and ultimately leads to a
dephasing between these two dynamical components of the polaron problem. We
visualize these features by a study of the temporal evolution of the charge
redistribution and the change in molecular deformations. The spectral and
dynamical properties of polarons discussed here are beyond the applicability of
the standard Lang Firsov approach to the polaron problem.Comment: 31 pages and 23 figs.(eps), accepted in the Phys. Rev.
Resonating bipolarons
Electrons coupled to local lattice deformations end up in selftrapped
localized molecular states involving their binding into bipolarons when the
coupling is stronger than a certain critical value. Below that value they exist
as essentially itinerant electrons. We propose that the abrupt crossover
between the two regimes can be described by resonant pairing similar to the
Feshbach resonance in binary atomic collision processes. Given the
intrinsically local nature of the exchange of pairs of itinerant electrons and
localized bipolarons, we demonstrate the occurrence of such a resonance on a
finite-size cluster made out of metallic atoms surrounding a polaronic ligand
center.Comment: 7 pages, 4 figures, to be published in Europhysics Letter
Stripe ordering and two-gap model for underdoped cuprates
The evidence of edge-gaps around the M-points in the metallic state of
underdoped cuprates has triggered a very active debate on their origin. We
first consider the possibility that this spectroscopic feature results from a
quasi-static charge ordering taking place in the underdoped regime. It comes
out that to explain the coexistence of gaps and arcs on the Fermi surface the
charge modulation should be in an eggbox form. In the lack of evidences for
that, we then investigate the local pairing induced by charge-stripe
fluctuations. A proper description of the strong anisotropy of both the
interactions and the Fermi velocities requires a two-gap model for pairing. We
find that a gap due to incoherent pairing forms near the M-points, while
coherence is established by the stiffness of the pairing near the nodal points.
The model allows for a continuos evolution from a pure BCS pairing (over- and
optimally doped regime) to a mixed boson-fermion model (heavily underdoped
regime).Comment: 4 pages, Proceedings of M2S-HTS
Upward curvature of the upper critical field in the Boson--Fermion model
We report on a non-conventional temperature behavior of the upper critical
field () which is found for the Boson-Fermion (BF) model. We show
that the BF model properly reproduces two crucial features of the experimental
data obtained for high- superconductors: does not saturate at
low temperatures and has an upward curvature. Moreover, the calculated upper
critical field fits very well the experimental results. This agreement holds
also for overdoped compounds, where a purely bosonic approach is not
applicable.Comment: 4 pages, 3 figures, revte
Influence of electron-phonon interaction on superexchange
We investigate the influence of electron-phonon coupling on the superexchange
interaction of magnetic insulators. Both the Holstein-Hubbard model where the
phonons couple to the electron density, as well as an extended Su, Schrieffer,
Heeger model where the coupling arises from modulation of the overlap integral
are studied using exact diagonalization and perturbative methods. In all cases
for both the adiabatic (but non-zero frequency) and anti-adiabatic parameter
regions the electron-phonon coupling is found to enhance the superexchange.Comment: 14 pages+4 postscript figure
Charge and spin inhomogeneity as a key to the physics of the high Tc cuprates
We present a coherent scenario for the physics of cuprate superconductors,
which is based on a charge-driven inhomogeneity, i.e. the ``stripe phase''. We
show that spin and charge critical fluctuations near the stripe instability of
strongly correlated electron systems provide an effective interaction between
the quasiparticles, which is strongly momentum, frequency, temperature and
doping dependent. This accounts for the various phenomena occurring in the
overdoped, optimally and underdoped regimes both for the normal and the
superconductive phase.Comment: 6 pages, 1 enclosed figure, proceedings of LT2
Density Matrix Approach to Local Hilbert Space Reduction
We present a density matrix approach for treating systems with a large or
infinite number of degrees of freedom per site with exact diagonalization or
the density matrix renormalization group. The method is demonstrated on the 1D
Holstein model of electrons coupled to Einstein phonons. In this system, two or
three optimized phonon modes per site give results as accurate as with 10-100
bare phonon levels per site.Comment: 4 pages, 4 figure
Analyzing the success of T-matrix diagrammatic theories in representing a modified Hubbard model
We present a systematic study of various forms of renormalization that can be
applied in the calculation of the self-energy of the Hubbard model within the
T-matrix approximation. We compare the exact solutions of the attractive and
repulsive Hubbard models, for linear chains of lengths up to eight sites, with
all possible taxonomies of the T-matrix approximation. For the attractive
Hubbard model, the success of a minimally self-consistent theory found earlier
in the atomic limit (Phys. Rev. B 71, 155111 (2005)) is not maintained for
finite clusters unless one is in the very strong correlation limit. For the
repulsive model, in the weak correlation limit at low electronic densities --
that is, where one would expect a self-consistent T-matrix theory to be
adequate -- we find the fully renormalized theory to be most successful. In our
studies we employ a modified Hubbard interaction that eliminates all Hartree
diagrams, an idea which was proposed earlier (Phys. Rev. B 63, 035104 (2000)).Comment: Includes modified discussion of 1st-order phase transition. Accepted
for publication in J. Phys.: Condensed Matte
- …