16 research outputs found

    New di(hetero)arylethers and di(hetero)arylamines in the thieno[3,2-b]pyridine series: Synthesis, growth inhibitory activity on human tumor cell lines and non-tumor cells, effects on cell cycle and on programmed cell death

    Get PDF
    New fluorinated and methoxylated di(hetero)arylethers and di(hetero)arylamines were prepared functionalizing the 7-position of the thieno[3,2-blpyridine, using copper (C-O) or palladium (C N) catalyzed couplings, respectively, of the 7-bromothieno[3,2-blpyridine, also prepared, with ortho, meta and para fluoro or methoxy phenols and anilines. The compounds obtained were evaluated for their growth inhibitory activity on the human tumor cell lines MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), HCI15 (colon carcinoma), HepG2 (hepatocellular carcinoma) and HeLa (cervical carcinoma). The most active compounds, a di(hetero)arylether with a methoxy group in the meta position relative to the ether function and two di(hetero)arylamines with a methoxy group either in the ortho or in the meta position relative to the NH, were further tested at their GI(50) concentrations on NCI-H460 cells causing pronounced alterations in the cell cycle profile and a strong and significant increase in the programmed death of these cells. The fluorinated and the other methoxylated compounds did not show important activity, presenting high GI(50) values in all the cell lines tested. Furthermore, the hepatotoxicity of the compounds was assessed using porcine liver primary cells (PLP2), established by some of us. Results showed that one of the most active compounds was not toxic to the non-tumor cells at their GI(50) concentrations showing to be the most promising as antitumoral.The authors would like to thank to the Foundation for the Science and Technology (PCT Portugal) for financial support through the NMR Portuguese network (Bruker 400 Avance III-Univ Minho); to FCT and FEDER-COMPETE/QREN/EU for financial support through the research unities PEst-C/QUI/UI686/2011 and PEst-OE/AGR/UI0690/2011, the research project PTDC/QUI-QUI/111060/2009 and the post-Doctoral grants attributed to R.C.C. (SFRH/BPD/68344/2010) and R.T.L. (SRH/BPD/68787/2010). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT

    When RON MET TAM in Mesothelioma: All Druggable for One, and One Drug for All?

    No full text
    Malignant pleural mesothelioma (MPM) is an aggressive inflammatory cancer with a poor survival rate. Treatment options are limited at best and drug resistance is common. Thus, there is an urgent need to identify novel therapeutic targets in this disease in order to improve patient outcomes and survival times. MST1R (RON) is a trans-membrane receptor tyrosine kinase (RTK), which is part of the c-MET proto-oncogene family. The only ligand recognized to bind MST1R (RON) is Macrophage Stimulating 1 (MST1), also known as Macrophage Stimulating Protein (MSP) or Hepatocyte Growth Factor-Like Protein (HGFL). In this study, we demonstrate that the MST1-MST1R (RON) signaling axis is active in MPM. Targeting this pathway with a small molecule inhibitor, LCRF-0004, resulted in decreased proliferation with a concomitant increase in apoptosis. Cell cycle progression was also affected. Recombinant MST1 treatment was unable to overcome the effect of LCRF-0004 in terms of either proliferation or apoptosis. Subsequently, the effect of an additional small molecular inhibitor, BMS-777607 (which targets MST1R (RON), MET, Tyro3, and Axl) also resulted in a decreased proliferative capacity of MPM cells. In a cohort of MPM patient samples, high positivity for total MST1R by IHC was an independent predictor of favorable prognosis. Additionally, elevated expression levels of MST1 also correlated with better survival. This study also determined the efficacy of LCRF-0004 and BMS-777607 in xenograft MPM models. Both LCRF-0004 and BMS-777607 demonstrated significant anti-tumor efficacy in vitro, however BMS-777607 was far superior to LCRF-0004. The in vivo and in vitro data generated by this study indicates that a multi-TKI, targeting the MST1R/MET/TAM signaling pathways, may provide a more effective therapeutic strategy for the treatment of MPM as opposed to targeting MST1R alone
    corecore