4,288 research outputs found
HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics
We describe a conservative, shock-capturing scheme for evolving the equations
of general relativistic magnetohydrodynamics. The fluxes are calculated using
the Harten, Lax, and van Leer scheme. A variant of constrained transport,
proposed earlier by T\'oth, is used to maintain a divergence free magnetic
field. Only the covariant form of the metric in a coordinate basis is required
to specify the geometry. We describe code performance on a full suite of test
problems in both special and general relativity. On smooth flows we show that
it converges at second order. We conclude by showing some results from the
evolution of a magnetized torus near a rotating black hole.Comment: 38 pages, 18 figures, submitted to Ap
Effective Polymer Dynamics of D-Dimensional Black Hole Interiors
We consider two different effective polymerization schemes applied to
D-dimensional, spherically symmetric black hole interiors. It is shown that
polymerization of the generalized area variable alone leads to a complete,
regular, single-horizon spacetime in which the classical singularity is
replaced by a bounce. The bounce radius is independent of rescalings of the
homogeneous internal coordinate, but does depend on the arbitrary fiducial cell
size. The model is therefore necessarily incomplete. It nonetheless has many
interesting features: After the bounce, the interior region asymptotes to an
infinitely expanding Kantowski-Sachs spacetime. If the solution is analytically
continued across the horizon, the black hole exterior exhibits asymptotically
vanishing quantum-corrections due to the polymerization. In all spacetime
dimensions except four, the fall-off is too slow to guarantee invariance under
Poincare transformations in the exterior asymptotic region. Hence the
four-dimensional solution stands out as the only example which satisfies the
criteria for asymptotic flatness. In this case it is possible to calculate the
quantum-corrected temperature and entropy. We also show that polymerization of
both phase space variables, the area and the conformal mode of the metric,
generically leads to a multiple horizon solution which is reminiscent of
polymerized mini-superspace models of spherically symmetric black holes in Loop
Quantum Gravity.Comment: 14 pages, 4 figures. Added discussion about the dependency on
auxiliary structures. Matches with the published versio
Transmission of Information in Active Networks
Shannon's Capacity Theorem is the main concept behind the Theory of
Communication. It says that if the amount of information contained in a signal
is smaller than the channel capacity of a physical media of communication, it
can be transmitted with arbitrarily small probability of error. This theorem is
usually applicable to ideal channels of communication in which the information
to be transmitted does not alter the passive characteristics of the channel
that basically tries to reproduce the source of information. For an {\it active
channel}, a network formed by elements that are dynamical systems (such as
neurons, chaotic or periodic oscillators), it is unclear if such theorem is
applicable, once an active channel can adapt to the input of a signal, altering
its capacity. To shed light into this matter, we show, among other results, how
to calculate the information capacity of an active channel of communication.
Then, we show that the {\it channel capacity} depends on whether the active
channel is self-excitable or not and that, contrary to a current belief,
desynchronization can provide an environment in which large amounts of
information can be transmitted in a channel that is self-excitable. An
interesting case of a self-excitable active channel is a network of
electrically connected Hindmarsh-Rose chaotic neurons.Comment: 15 pages, 5 figures. submitted for publication. to appear in Phys.
Rev.
High-order harmonic generation from inhomogeneous fields
We present theoretical studies of high-order harmonic generation (HHG)
produced by non-homogeneous fields as resulting from the illumination of
plasmonic nanostructures with a short laser pulse. We show that both the
inhomogeneity of the local fields and the confinement of the electron movement
play an important role in the HHG process and lead to the generation of even
harmonics and a significantly increased cutoff, more pronounced for the longer
wavelengths cases studied. In order to understand and characterize the new HHG
features we employ two different approaches: the numerical solution of the time
dependent Schr\"odinger equation (TDSE) and the semiclassical approach known as
Strong Field Approximation (SFA). Both approaches predict comparable results
and show the new features, but using the semiclassical arguments behind the SFA
and time-frequency analysis tools, we are able to fully understand the reasons
of the cutoff extension.Comment: 25 pages, 12 figure
Transgressing the horizons: Time operator in two-dimensional dilaton gravity
We present a Dirac quantization of generic single-horizon black holes in
two-dimensional dilaton gravity. The classical theory is first partially
reduced by a spatial gauge choice under which the spatial surfaces extend from
a black or white hole singularity to a spacelike infinity. The theory is then
quantized in a metric representation, solving the quantum Hamiltonian
constraint in terms of (generalized) eigenstates of the ADM mass operator and
specifying the physical inner product by self-adjointness of a time operator
that is affinely conjugate to the ADM mass. Regularity of the time operator
across the horizon requires the operator to contain a quantum correction that
distinguishes the future and past horizons and gives rise to a quantum
correction in the hole's surface gravity. We expect a similar quantum
correction to be present in systems whose dynamics admits black hole formation
by gravitational collapse.Comment: 32 pages, 1 eps figure. v2: references and comments adde
Thermodynamical Cost of Accessing Quantum Information
Thermodynamics is a macroscopic physical theory whose two very general laws
are independent of any underlying dynamical laws and structures. Nevertheless,
its generality enables us to understand a broad spectrum of phenomena in
physics, information science and biology. Recently, it has been realised that
information storage and processing based on quantum mechanics can be much more
efficient than their classical counterpart. What general bound on storage of
quantum information does thermodynamics imply? We show that thermodynamics
implies a weaker bound than the quantum mechanical one (the Holevo bound). In
other words, if any post-quantum physics should allow more information storage
it could still be under the umbrella of thermodynamics.Comment: 3 figure
Modeling the η Corvi debris disk from the sub-AU scale to its outermost regions
Dusty debris disks surrounding main sequence stars are thought to be analogues to thepopulations of small bodies of the Solar System (asteroids, comets/icy bodies and dust grains), however with often much higher masses and associated dust production rates. Mecanisms such as massive collisions or LHB-like events must therefore be invoked to justify their existence. This is especially striking for the nearby F2V star η Corvi that shows a very strong mid- and far-infrared excess despite an estimated age of ~1.4 Gyr (Lisse et al. 2012, Wyatt et al. 2005). We present new observations of the η Crv debris disk obtained in the far-infrared with Herschel/PACS and SPIRE and in the mid-infrared with the Keck Interferometer Nuller (Millan-Gabet et al. 2011). The Herschel/PACS images at 70, 100 and 160 μm reveal a well resolved belt of cold material at ~130 AU, as well as an unresolved component in the innermost parts of the system. This warmer counterpart is resolved in the mid-infrared as a strong null excess originating from within the ~2x4 AU field-of-view of the interferometer, which is reminiscent of the architecture of the Fomalhaut debris disk (Mennesson et al. 2012, Lebreton et al. 2013). The signature of warm silicate dust is also very clear in Spitzer/IRS high-resolution spectra (Chen et al. 2006) at intermediate wavelengths (10-35 μm). We undertake to establish a consistent model of the debris disk from the sub-AU scale to its outermost regions using the GRaTer radiative transfer code (Augereau et al. 1999a, Lebreton et al. 2013) by adjusting simultaneously the interferometric nulls, the resolved Herschel images and the spectro-photometric data against a large parameter space. Our analysis providesaccurate estimates of the fundamental parameters of the disk: its surface density profile, grain size distribution and mass, making it possible to unveil the origin of the dust and the relation between the cold (~50 K) Kuiper-like belt and the warm (~500 K) exo-zodiacal disk. We further discuss the possible existence of an additional dust population at intermediate temperatures and its nature. η Corvi will be of prime interest for future observations with the JWST. We finally make predictions of the ability of NIRCam and MIRI to image details in the disk at high contrast with both spatial and spectral resolution in order to obtain a better view of this complex planetary system
Good practice in mental health care for socially marginalised groups in Europe: a qualitative study of expert views in 14 countries
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
- …