1,004 research outputs found

    Particle models from orientifolds at Gepner-orbifold points

    Full text link
    We consider configurations of stacks of orientifold planes and D-branes wrapped on a non trivial internal space of the structure {(Gepner model)^{c=3n} x T^{2(3-n)}}/Z_N, for n=1,2,3. By performing simple moddings by discrete symmetries of Gepner models at orienti fold points, consistent with a Z_N orbifold action, we show that projection on D-brane configurations can be achieved, generically leading to chiral gauge theories. Either supersymmetric or non-supersymmetric (tachyon free) models can be obtained. We illustrate the procedure through some explicit examples.Comment: 36 pages, no figures Corrected sign of eq. 6.26 references added, minor correction

    The alpha-7 nicotinic acetylcholine receptor is involved in a direct inhibitory effect of nicotine on GnRH release : In vitro studies

    Get PDF
    The activation of nicotinic cholinergic receptors (nAChR) inhibits the reproductive axis; however, it is not clear whether nicotine may directly modulate the release of hypothalamic gonadotropin-releasing hormone (GnRH). Experiments carried out in GT1-1 immortalized GnRH neurons reveal the presence of a single class of high affinity \u3b14\u3b22 and \u3b17 nAchR subtypes. The exposure of GT1-1\ua0cells to nicotine does not modify the basal accumulation of GnRH. However, nicotine was found to modify GnRH pulsatility in perifusion experiments and inhibits, the release of GnRH induced by prostaglandin E1 or by K(+)-induced cell depolarization; these effects were reversed by D-tubocurarine and \u3b1-bungarotoxin. In conclusion, the results reported here indicate that: functional nAChRs are present on GT1-1\ua0cells, the activation of the \u3b1-bungarotoxin-sensitive subclass (\u3b17) produces an inhibitory effect on the release of GnRH and that the direct action of nicotine on GnRH neurons may be involved in reducing fertility of smokers

    The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter

    Get PDF
    With an effective telescope area of order 10^4 m^2, a threshold of ~50 GeV and a pointing accuracy of 2.5 degrees, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe its performance, focussing on the capability to detect halo dark matter particles via their annihilation into neutrinos.Comment: Latex2.09, 16 pages, uses epsf.sty to place 15 postscript figures. Talk presented at the 3rd International Symposium on Sources and Detection of Dark Matter in the Universe (DM98), Santa Monica, California, Feb. 199

    Age at menopause and lung function: a Mendelian randomisation study

    Get PDF
    In observational studies, early menopause is associated with lower forced vital capacity (FVC) and a higher risk of spirometric restriction, but not airflow obstruction. It is, however, unclear if this association is causal. We therefore used a Mendelian randomisation (MR) approach, which is not affected by classical confounding, to assess the effect of age at natural menopause on lung function.We included 94\u200a742 naturally post-menopausal women from the UK Biobank and performed MR analyses on the effect of age at menopause on forced expiratory volume in 1\u2005s (FEV1), FVC, FEV1/FVC, spirometric restriction (FV

    Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption

    Get PDF
    Neutrinos interact only very weakly, so they are extremely penetrating. However, the theoretical neutrino-nucleon interaction cross section rises with energy such that, at energies above 40 TeV, neutrinos are expected to be absorbed as they pass through the Earth. Experimentally, the cross section has been measured only at the relatively low energies (below 400 GeV) available at neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here we report the first measurement of neutrino absorption in the Earth, using a sample of 10,784 energetic upward-going neutrino-induced muons observed with the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories through the Earth. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an order of magnitude higher in energy than previous measurements. The measured cross section is 1.300.19+0.211.30^{+0.21}_{-0.19} (stat.) 0.43+0.39^{+0.39}_{-0.43} (syst.) times the prediction of the Standard Model \cite{CooperSarkar:2011pa}, consistent with the expectation for charged and neutral current interactions. We do not observe a dramatic increase in the cross section, expected in some speculative models, including those invoking new compact dimensions \cite{AlvarezMuniz:2002ga} or the production of leptoquarks \cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445
    corecore