4 research outputs found

    Independent validation of Swarm Level2 magnetic field products and 'Quick Look' for Level 1b data

    Get PDF
    Magnetic field models are produced on behalf of the European Space Agency (ESA) by an independent scientific consortium known as the Swarm Satellite Constellation Application and Research Facility (SCARF), through the Level 2 Processor (L2PS). The consortium primarily produces magnetic field models for the core, lithosphere, ionosphere and magnetosphere. Typically, for each magnetic product, two magnetic field models are produced in separate chains using complementary data selection and processing techniques. Hence, the magnetic field models from the complementary processing chains will be similar but not identical. The final step in the overall L2PS therefore involves inspection and validation of the magnetic field models against each other and against data from (semi-) independent sources (e.g. ground observatories). We describe the validation steps for each magnetic field product and the comparison against independent datasets, and we show examples of the output of the validation. In addition, the L2PS also produces a daily set of `Quick Look' output graphics and statistics to monitor the overall quality of Level 1b data issued by ESA. We describe the outputs of the `Quick Look' chain

    Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge

    No full text
    International audienceThe oceanic crust is formed by a combination of magmatic and tectonic processes at mid-ocean spreading centers. Under ultraslow spreading environment, however, observations of thin crust and mantle-derived peridotites on the seafloor suggest that a large portion of crust is formed mainly by tectonic processes, with little or absence of magmatism. Using three-dimensional seismic tomography at an ultraslow spreading Southwest Indian Ridge segment containing a central volcano at 50°28'E, here we report the presence of an extremely magmatic accretion of the oceanic crust. Our results reveal a low-velocity anomaly (-0.6 km/s) in the lower crust beneath the central volcano, suggesting the presence of partial melt, which is accompanied by an unusually thick crust (~9.5 km). We also observe a strong along-axis variation in crustal thickness from 9.5 to 4 km within 30-50 km distance, requiring a highly focused melt delivery from the mantle. We conclude that the extremely magmatic accretion is due to localized melt flow toward the central volcano, which was enhanced by the significant along-axis variation in lithosphere thickness at the ultraslow spreading Southwest Indian Ridge
    corecore