1,380 research outputs found

    Design Parameters in Multimodal Games for Rehabilitation

    Get PDF
    Published under the Liebert "Open Option"Objectives: The repetitive and sometimes mundane nature of conventional rehabilitation therapy provides an ideal opportunity for development of interactive and challenging therapeutic games that have the potential to engage and motivate the players. Certain game design parameters that may encourage patients to actively participate by making the games more enjoyable have been identified. In this article, we describe a formative study in which we designed and evaluated some of these parameters with healthy subjects. Materials and Methods: The ‘‘operant conditioning’’ and ‘‘scoring’’ design parameters were incorporated in a remake of a classic labyrinth game, ‘‘Marble Maze.’’ A group of participants (n = 37) played the game twice: Once in the control condition without both modalities and then with either one of the parameters or with both. Measures of game duration and number of fails in the game were recorded along with survey questionnaires to measure player perceptions of intrinsic motivation on the game. Results: Longer playtimes, higher levels of interest/enjoyment, and effort to play the game were recorded with the introduction of these parameters. Conclusions: This study provides an understanding on how game design parameters can be used to motivate and encourage people to play longer. With these positive results, future aims are to test the parameters with stroke patients, providing much clearer insight as to what influences these parameters have on patients un- dergoing therapy. The ultimate goal is to utilize game design in order to maintain longer therapeutic interaction between a patient and his or her therapy medium.Peer reviewedFinal Published versio

    Imaging Transport Resonances in the Quantum Hall Effect

    Full text link
    We use a scanning capacitance probe to image transport in the quantum Hall system. Applying a DC bias voltage to the tip induces a ring-shaped incompressible strip (IS) in the 2D electron system (2DES) that moves with the tip. At certain tip positions, short-range disorder in the 2DES creates a quantum dot island in the IS. These islands enable resonant tunneling across the IS, enhancing its conductance by more than four orders of magnitude. The images provide a quantitative measure of disorder and suggest resonant tunneling as the primary mechanism for transport across ISs.Comment: 4 pages, 4 figures, submitted to PRL. For movies and additional infomation, see http://electron.mit.edu/scanning/; Added scale bars to images, revised discussion of figure 3, other minor change

    Two-subband quantum Hall effect in parabolic quantum wells

    Full text link
    The low-temperature magnetoresistance of parabolic quantum wells displays pronounced minima between integer filling factors. Concomitantly the Hall effect exhibits overshoots and plateau-like features next to well-defined ordinary quantum Hall plateaus. These effects set in with the occupation of the second subband. We discuss our observations in the context of single-particle Landau fan charts of a two-subband system empirically extended by a density dependent subband separation and an enhanced spin-splitting g*.Comment: 5 pages, submitte

    The ras-related mouse ypt1 protein can functionally replace the YPT1 gene product in yeast.

    Get PDF
    The protein-coding region of the essential Saccharomyces cerevisiae YPT1 gene coding for a ras-related, guanine-nucleotide-binding protein was exchanged in chromosome VI by the protein-coding segment of either the mouse ypt1 gene or the v-Ki-ras gene, and different chimeric YPT1-v-Ki-ras genes. The mouse ypt1 protein with 71% of identical residues compared with the yeast Ypt1 protein could functionally fully replace its yeast homologue as long as the mouse gene was overexpressed under transcriptional control of the inducible GAL10 promoter. In contrast, neither the viral Ki-ras nor the hybrid proteins were able to substitute for the loss of YPT1 gene function. This study suggests that different parts of the yeast Ypt1 protein are required for the interaction with cellular targets and that these essential parts are conserved in the mammalian ypt1 protein

    Correlation of eigenstates in the critical regime of quantum Hall systems

    Full text link
    We extend the multifractal analysis of the statistics of critical wave functions in quantum Hall systems by calculating numerically the correlations of local amplitudes corresponding to eigenstates at two different energies. Our results confirm multifractal scaling relations which are different from those occurring in conventional critical phenomena. The critical exponent corresponding to the typical amplitude, α02.28\alpha_0\approx 2.28, gives an almost complete characterization of the critical behavior of eigenstates, including correlations. Our results support the interpretation of the local density of states being an order parameter of the Anderson transition.Comment: 17 pages, 9 Postscript figure

    Spinful Composite Fermions in a Negative Effective Field

    Full text link
    In this paper we study fractional quantum Hall composite fermion wavefunctions at filling fractions \nu = 2/3, 3/5, and 4/7. At each of these filling fractions, there are several possible wavefunctions with different spin polarizations, depending on how many spin-up or spin-down composite fermion Landau levels are occupied. We calculate the energy of the possible composite fermion wavefunctions and we predict transitions between ground states of different spin polarizations as the ratio of Zeeman energy to Coulomb energy is varied. Previously, several experiments have observed such transitions between states of differing spin polarization and we make direct comparison of our predictions to these experiments. For more detailed comparison between theory and experiment, we also include finite-thickness effects in our calculations. We find reasonable qualitative agreement between the experiments and composite fermion theory. Finally, we consider composite fermion states at filling factors \nu = 2+2/3, 2+3/5, and 2+4/7. The latter two cases we predict to be spin polarized even at zero Zeeman energy.Comment: 17 pages, 5 figures, 4 tables. (revision: incorporated referee suggestions, note added, updated references

    Adiabatic quantization of Andreev levels

    Get PDF
    We identify the time TT between Andreev reflections as a classical adiabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ\lambda), coupled to a superconductor by an NN-mode point contact. Quantization of the adiabatically invariant torus in phase space gives a discrete set of periods TnT_{n}, which in turn generate a ladder of excited states ϵnm=(m+1/2)π/Tn\epsilon_{nm}=(m+1/2)\pi\hbar/T_{n}. The largest quantized period is the Ehrenfest time T0=λ1lnNT_{0}=\lambda^{-1}\ln N. Projection of the invariant torus onto the coordinate plane shows that the wave functions inside the cavity are squeezed to a transverse dimension W/NW/\sqrt{N}, much below the width WW of the point contact.Comment: 4 pages, 3 figure

    Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking

    Full text link
    A strategy is proposed to realize robust transport in time reversal invariant photonic system. Using numerical simulation and microwave experiment, we demonstrate that a chiral guided mode in the channel of a three-dimensional dielectric woodpile photonic crystal is immune to the scattering of a square patch of metal or dielectric inserted to block the channel. The chirality based robust transport can be realized in nonmagnetic dielectric materials without any external field.Comment: 16 pages, 5 figure

    Optical Hall Effect in the Integer Quantum Hall Regime

    Full text link
    Optical Hall conductivity σxy(ω)\sigma_{xy}(\omega) is measured from the Faraday rotation for a GaAs/AlGaAs heterojunction quantum Hall system in the terahertz frequency regime. The Faraday rotation angle (\sim fine structure constant \sim mrad) is found to significantly deviate from the Drude-like behavior to exhibit a plateau-like structure around the Landau-level filling ν=2\nu=2. The result, which fits with the behavior expected from the carrier localization effect in the ac regime, indicates that the plateau structure, although not quantized, still exists in the terahertz regime.Comment: 4 pages, 4 figure

    Hyperfine interaction induced critical exponents in the quantum Hall effect

    Full text link
    We study localization-delocalization transition in quantum Hall systems with a random field of nuclear spins acting on two-dimensional (2d) electron spins via hyperfine contact (Fermi) interaction. We use Chalker-Coddington network model, which corresponds to the projection onto the lowest Landau level. The inhomogeneous nuclear polarization acts on the electrons as an additional confining potential, and, therefore, introduces additional parameter pp (the probability to find a polarized nucleus in the vicinity of a saddle point of random potential) responsible for the change from quantum to classical behavior. In this manner we obtain two critical exponents corresponding to quantum and classical percolation. We also study how the 2d extended state develops into the one-dimensional (1d) critical state.Comment: 9 pages, 3 figure
    corecore