6,211 research outputs found

    Clustering and collision of inertial particles in random velocity fields

    Full text link
    The influence of clustering on the collision rate of inertial particles in a smooth random velocity field, mimicking the smaller scales of a turbulent flow, is analyzed. For small values of the the ratio between the relaxation time of the particle velocity and the characteristic time of the field, the effect of clusters is to make more energetic collisions less likely. The result is independent of the flow dimensionality and is due only to the origin of collisions in the process of caustic formation.Comment: 4 pages, 3 figures, revtex

    Concentration fluctuations of large Stokes number particles in a one-dimensional random velocity field

    Full text link
    We analyze the behavior of an ensemble of inertial particles in a one-dimensional smooth Gaussian velocity field, in the limit of large inertia, but considering a finite correlation time for the random field. We derive in this limit a perturbative scheme for the calculation of the concentration correlation and of the particle relative velocity distribution, providing analytical expressions for the concentration fluctuation amplitude, its correlation length, and the modification in the particle pair relative velocity variance. The amplitude of the concentration fluctuations is characterized by slow decay at large inertia and a much larger correlation length than that of the random field. The fluctuation structure in velocity space is very different from predictions from short-time correlated random velocity fields, with only few particle pairs crossing at sufficiently small relative velocity to produce correlations. Concentration fluctuations are associated with depletion of the relative velocity variance of colliding particles.Comment: 8 pages, 1 figure, revtex

    The ROSAT Deep Cluster Survey: the X-ray Luminosity Function out to z=0.8

    Get PDF
    We present the X-ray Luminosity Function (XLF) of the ROSAT Deep Cluster Survey (RDCS) sample over the redshift range 0.05-0.8. Our results are derived from a complete flux-limited subsample of 70 galaxy clusters, representing the brightest half of the total sample, which have been spectroscopically identified down to the flux limit of 4*10^{-14} erg/cm^2/s (0.5-2.0 keV) and have been selected via a serendipitous search in ROSAT-PSPC pointed observations. The redshift baseline is large enough that evolutionary effects can be studied within the sample. The local XLF (z < 0.25) is found to be in excellent agreement with previous determinations using the ROSAT All-Sky Survey data. The XLF at higher redshifts, when combined with the deepest number counts constructed to date (f>2*10^{-14} arg/cm^2/s), reveal no significant evolution at least out to z=0.8, over a luminosity range 2*10^{42}-3*10^{44} erg/s in the [0.5-2 keV] band. These findings extend the study of cluster evolution to the highest redshifts and the faintest fluxes probed so far in X-ray surveys. They complement and do not necessarily conflict with those of the Einstein Extended Medium Sensitivity Survey, leaving the possibility of negative evolution of the brightest end of the XLF at high redshifts.Comment: 12 pages, 4 figures, LaTeX (aasms4.sty). To appear in ApJ Letter

    Globular Cluster Formation from Colliding Substructure

    Full text link
    We investigate a scenario where the formation of Globular Clusters (GCs) is triggered by high-speed collisions between infalling atomic-cooling subhalos during the assembly of the main galaxy host, a special dynamical mode of star formation that operates at high gas pressures and is intimately tied to LCDM hierarchical galaxy assembly. The proposed mechanism would give origin to "naked" globulars, as colliding dark matter subhalos and their stars will simply pass through one another while the warm gas within them clashes at highly supersonic speed and decouples from the collisionless component, in a process reminiscent of the Bullet galaxy cluster. We find that the resulting shock-compressed layer cools on a timescale that is typically shorter than the crossing time, first by atomic line emission and then via fine-structure metal-line emission, and is subject to gravitational instability and fragmentation. Through a combination of kinetic theory approximation and high-resolution NN-body simulations, we show that this model may produce: (a) a GC number-halo mass relation that is linear down to dwarf galaxy scales and agrees with the trend observed over five orders of magnitude in galaxy mass; (b) a population of old globulars with a median age of 12 Gyr and an age spread similar to that observed; (c) a spatial distribution that is biased relative to the overall mass profile of the host; and (d) a bimodal metallicity distribution with a spread similar to that observed in massive galaxies.Comment: 15 pages, 5 figures, accepted for publication by the Astrophysical Journa

    Early Enrichment of the Intergalactic Medium and its Feedback on Galaxy Formation

    Get PDF
    Supernova-driven outflows from early galaxies may have had a large impact on the kinetic and chemical structure of the intergalactic medium (IGM). We use three-dimensional Monte Carlo cosmological realizations of a simple linear peaks model to track the time evolution of such metal-enriched outflows and their feedback on galaxy formation. We find that at most 30% of the IGM by volume is enriched to values above 10^-3 solar in models that only include objects that cool by atomic transitions. The majority of enrichment occurs relatively early (5 < z < 12) and resulting in a mass-averaged cosmological metallicity between 10^-3 and 10^-1.5 solar. The inclusion of Population III objects that cool through H2 line emission has only a minor impact on these results: increasing the mean metallicity and filling factor by at most a factor of 1.4, and moving the dawn of the enrichment epoch to a redshift of approximately 14 at the earliest. Thus enrichment by outflowing galaxies is likely to have been incomplete and inhomogeneous, biased to the areas near the starbursting galaxies themselves. Models with a 10% star formation efficiency can satisfactorily reproduce the nearly constant (2 < z < 5, Z approximately 3.5 x 10^-4 solar) metallicity of the low column density Ly-alpha forest derived by Songaila (2001), an effect of the decreasing efficiency of metal loss from larger galaxies. Finally, we show that IGM enrichment is intimately tied to the ram-pressure stripping of baryons from neighboring perturbations. This results in the suppression of at least 20% of the dwarf galaxies in the mass range 10^8.5 to 10^9.5 solar, in all models with filling factors greater than 2%, and an overall suppression of approximately 50% of dwarf galaxies in the most observationally-favored model.Comment: 8 pages, 5 figures, accepted to Ap

    Cosmological Reionization

    Full text link
    In popular cosmological scenarios, some time beyond a redshift of 10, stars within protogalaxies created the first heavy elements; these systems, together perhaps with an early population of quasars, generated the ultraviolet radiation and mechanical energy that reheated and reionized the cosmos. The history of the Universe during and soon after these crucial formative stages is recorded in the all-pervading intergalactic medium (IGM), which contains most of the ordinary baryonic material left over from the big bang. Throughout the epoch of structure formation, the IGM becomes clumpy and acquires peculiar motions under the influence of gravity, and acts as a source for the gas that gets accreted, cools, and forms stars within galaxies, and as a sink for the metal enriched material, energy, and radiation which they eject.Comment: LateX, 13 pages, 4 figures, slightly revised version (corrected several typos), to appear in Phil. Trans. R. Soc. London A (2000) 35

    Interaction of massive black hole binaries with their stellar environment: II. Loss-cone depletion and binary orbital decay

    Get PDF
    We study the long-term evolution of massive black hole binaries (MBHBs) at the centers of galaxies using detailed scattering experiments to solve the full three-body problem. Ambient stars drawn from a isotropic Maxwellian distribution unbound to the binary are ejected by the gravitational slingshot. We construct a minimal, hybrid model for the depletion of the loss cone and the orbital decay of the binary, and show that secondary slingshots - stars returning on small impact parameter orbits to have a second super-elastic scattering with the MBHB - may considerably help the shrinking of the pair in the case of large binary mass ratios. In the absence of loss-cone refilling by two-body relaxation or other processes, the mass ejected before the stalling of a MBHB is half the binary reduced mass. About 50% of the ejected stars are expelled ejected in a "burst" lasting ~1E4 yrs M_6^1/4, where M_6 is the binary mass in units of 1E6 Msun. The loss cone is completely emptied in a few bulge crossing timescales, 1E7 yrs M_6^1/4. Even in the absence of two-body relaxation or gas dynamical processes, unequal mass and/or eccentric binaries with M_6 >0.1 can shrink to the gravitational wave emission regime in less than a Hubble time, and are therefore "safe" targets for the planned Laser Interferometer Space Antenna (LISA).Comment: Minor revision. 10 pages, 7 figures, ApJ in pres

    Orthognathic surgery and rhinoplasty in Binder syndrome

    Get PDF
    El síndrome de Binder es una patología caracterizada por hipoplasia nariz-maxilar, ángulo naso-frontal plano, senos frontales hipoplasicos, ausencia de la espina nasal anterior, columela corta y ángulo nasolabial agudo. El tratamiento del los pacientes con síndrome de Binder puede ser ortodóntico o quirúrgico según la gravedad de la malformación. En este trabajo hemos realizado una revision bibliográfica sobre la etiología, el diagnóstico diferential y el tratamiento de la sindrome de Binder y presentamos un caso clínico de un paciente binderiano sometido a intervención de cirugía ortognática y rinoplastia con injerto de cartílago costal para recostruir el dorso y la punta nasal. Binder syndrome is a disorder characterized by nasomaxillary hypoplasia that results in a short nose, a frontonasal angle of almost 180 degrees, hypoplasia of the frontal sinuses, an absent anterior nasal spine, a short columella and an acute nasolabial angle. The patient can be treated orthodontically or surgically depending on the seriousness of the malformation. We review the literature on the etiology, differential diagnosis and treatment of Binder syndrome. We present the case of a boy with this syndrome surgically treated with orthognatic surgery and rhinoplasty with an L-shaped rib cartilage graft

    Viscoelasticity and Stokes-Einstein relation in repulsive and attractive colloidal glasses

    Full text link
    We report a numerical investigation of the visco-elastic behavior in models for steric repulsive and short-range attractive colloidal suspensions, along different paths in the attraction-strength vs packing fraction plane. More specifically, we study the behavior of the viscosity (and its frequency dependence) on approaching the repulsive glass, the attractive glass and in the re-entrant region where viscosity shows a non monotonic behavior on increasing attraction strength. On approaching the glass lines, the increase of the viscosity is consistent with a power-law divergence with the same exponent and critical packing fraction previously obtained for the divergence of the density fluctuations. Based on mode-coupling calculations, we associate the increase of the viscosity with specific contributions from different length scales. We also show that the results are independent on the microscopic dynamics by comparing newtonian and brownian simulations for the same model. Finally we evaluate the Stokes-Einstein relation approaching both glass transitions, finding a clear breakdown which is particularly strong for the case of the attractive glass.Comment: 12 pages; sent to J. Chem. Phy
    corecore