7,715 research outputs found

    Density and spin response of a strongly-interacting Fermi gas in the attractive and quasi-repulsive regime

    Get PDF
    Recent experimental advances in ultra-cold Fermi gases allow for exploring response functions under different dynamical conditions. In particular, the issue of obtaining a "quasi-repulsive" regime starting from a Fermi gas with an attractive inter-particle interaction while avoiding the formation of the two-body bound state is currently debated. Here, we provide a calculation of the density and spin response for a wide range of temperature and coupling both in the attractive and quasi-repulsive regime, whereby the system is assumed to evolve non-adiabatically toward the "upper branch" of the Fermi gas. A comparison is made with the available experimental data for these two quantities.Comment: 8 pages, 7 figures, to appear on Phys. Rev. Let

    Size shrinking of composite bosons for increasing density in the BCS to Bose-Einstein crossover

    Full text link
    We consider a system of fermions in the continuum case at zero temperature, in the strong-coupling limit of a short-range attraction when composite bosons form as bound-fermion pairs. We examine the density dependence of the size of the composite bosons at leading order in the density ("dilute limit"), and show on general physical grounds that this size should decrease with increasing density, both in three and two dimensions. We then compare with the analytic zero-temperature mean-field solution, which indeed exhibits the size shrinking of the composite bosons both in three and two dimensions. We argue, nonetheless, that the two-dimensional mean-field solution is not consistent with our general result in the "dilute limit", to the extent that mean field treats the scattering between composite bosons in the Born approximation which is known to break down at low energy in two dimensions.Comment: Revised version to be published on Eur. Phys. Jour. B, 7 pages, 1 figur

    Extracting the condensate density from projection experiments with Fermi gases

    Full text link
    A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the BEC sides, thus ``projecting'' the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of mean field.Comment: 4 pages, 4 figure

    From superconducting fluctuations to the bosonic limit in the response functions above the critical temperature

    Full text link
    We investigate the density, current, and spin response functions above the critical temperature for a system of three-dimensional fermions interacting via an attractive short-range potential. In the strong-coupling (bosonic) limit of this interaction, we identify the dominant diagrammatic contributions for a ``dilute'' system of composite bosons which form as bound-fermion pairs, and compare them with the usual (Aslamazov-Larkin, Maki-Thompson, and density-of-states) terms occurring in the theory of superconducting fluctuations above the critical temperature for a clean system in the weak-coupling limit. We show that, at the zeroth order in the diluteness parameter for the composite bosons, the Aslamazov-Larkin term still represents formally the dominant contribution to the density and current response functions, while the Maki-Thompson and density-of-states terms are strongly suppressed. Corrections to the Aslamazov-Larkin term are then considered at the next order in the diluteness parameter for the composite bosons. The spin response function is also examined, and it is found to be exponentially suppressed in the bosonic limit only when appropriate sets of diagrams are considered simultaneously.Comment: 10 pages, 6 figure

    Temperature dependence of a vortex in a superfluid Fermi gas

    Full text link
    The temperature dependence of an isolated quantum vortex, embedded in an otherwise homogeneous fermionic superfluid of infinite extent, is determined via the Bogoliubov-de Gennes (BdG) equations across the BCS-BEC crossover. Emphasis is given to the BCS side of this crossover, where it is physically relevant to extend this study up to the critical temperature for the loss of the superfluid phase, such that the size of the vortex increases without bound. To this end, two novel techniques are introduced. The first one solves the BdG equations with "free boundary conditions", which allows one to determine with high accuracy how the vortex profile matches its asymptotic value at a large distance from the center, thus avoiding a common practice of constraining the vortex in a cylinder with infinite walls. The second one improves on the regularization procedure of the self-consistent gap equation when the inter-particle interaction is of the contact type, and permits to considerably reduce the time needed for its numerical integration, by drawing elements from the derivation of the Gross-Pitaevskii equation for composite bosons starting from the BdG equations.Comment: 18 pgaes, 16 figure

    Relative ages of lava flows at Alba Patera, Mars

    Get PDF
    Many large lava flows on the flanks of Alba Patera are astonishing in their volume and length. As a suite, these flows suggest tremendously voluminous and sustained eruptions, and provide dimensional boundary conditions typically a factor of 100 larger than terrestrial flows. One of the most striking features associated with Alba Patera is the large, radially oriented lava flows that exhibit a variety of flow morphologies. These include sheet flows, tube fed and tube channel flows, and undifferentiated flows. Three groups of flows were studied; flows on the northwest flank, southeast flank, and the intracaldera region. The lava flows discussed probably were erupted as a group during the same major volcanic episode as suggested by the data presented. Absolute ages are poorly constrained for both the individual flows and shield, due in part to disagreement as to which absolute age curve is representative for Mars. A relative age sequence is implied but lacks precision due to the closeness of the size frequency curves

    Pairing effects in the normal phase of a two-dimensional Fermi gas

    Get PDF
    In a recent experiment [M. Feld et al., Nature 480, 75 (2011); B. Froehlich et al., Phys. Rev. Lett. 109,130403 (2012)], a pairing gap was detected in a two-dimensional (2D) Fermi gas with attractive interaction at temperatures where superfluidity does not occur. The question remains open as to whether this gap is a pseudogap phenomenon or is due to a molecular state. In this paper, by using a t-matrix approach, we reproduce quite well the experimental data for a 2D Fermi gas, and set the boundary between the pseudogap and molecular regimes. We also show that pseudogap phenomena occurring in 2D and 3D can be related through a variable spanning the BCS-BEC crossover in a universal way.Comment: 10 pages, 9 figures; final versio

    Trapped fermions with density imbalance in the BEC limit

    Full text link
    We analyze the effects of imbalancing the populations of two-component trapped fermions, in the BEC limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atomsComment: 5 pages, 4 figure

    Temperature and coupling dependence of the universal contact intensity for an ultracold Fermi gas

    Full text link
    Physical properties of an ultracold Fermi gas in the temperature-coupling phase diagram can be characterized by the contact intensity C, which enters the pair-correlation function at short distances and describes how the two-body problem merges into its surrounding. We show that the local order established by pairing fluctuations about the critical temperature Tc of the superfluid transition considerably enhances the contact C in a temperature range where pseudogap phenomena are maximal. Our ab initio results for C in a trap compare well with recently available experimental data over a wide coupling range. An analysis is also provided for the effects of trap averaging on C.Comment: 5 pages, 5 figure
    • …
    corecore