612 research outputs found

    Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery

    Get PDF
    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200–400 nm) and stiffness (405–902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml−1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes

    Endocrine profile of the kisspeptin receptor agonist MVT-602 in healthy premenopausal women with and without ovarian stimulation: results from two randomized, placebo-controlled clinical trials

    Get PDF
    Kisspeptin is an essential regulator of hypothalamic gonadotropin-releasing hormone release and is required for physiological ovulation. Native kisspeptin-54 (KP54) can induce oocyte maturation during in vitro fertilization treatment, including in women at high risk of ovarian hyperstimulation syndrome. MVT-602 is a potent kisspeptin receptor agonist with prospective utility to treat anovulatory disorders by triggering oocyte maturation and ovulation during medically assisted reproduction (MAR). Currently, the endocrine profile of MVT-602 during ovarian stimulation is unreported. Objective To determine the endocrine profile of MVT-602 in the follicular phase of healthy premenopausal women (Phase-1 trial), and after minimal ovarian stimulation to more closely reflect the endocrine milieu encountered during MAR (Phase-2a trial). Design Two randomized, placebo-controlled, parallel group, dose-finding trials. Setting Clinical trials unit, Netherlands. Participants Healthy women aged 18-35 years, either without (Phase-1; n=24), or with ovarian stimulation (Phase-2a; n=75). Interventions Phase-1: Single subcutaneous dose of MVT-602 (0.3, 1.0, or 3.0 μg) or placebo, (n=6 per dose). Phase-2a: Single subcutaneous dose of MVT-602 (0.1, 0.3, 1.0, or 3.0 μg; n=16-17 per dose), triptorelin 0.2 mg (n=5; active comparator), or placebo (n=5). Main Objectives and Outcome Measures Phase-1: Safety/tolerability; pharmacokinetics; pharmacodynamics (LH and other reproductive hormones). Phase-2a: Safety/tolerability; pharmacokinetics; pharmacodynamics (LH and other reproductive hormones); time to ovulation assessed by transvaginal ultrasound. Results In both trials, MVT-602 was safe and well-tolerated across the entire dose-range. It was rapidly absorbed and eliminated, with a mean elimination half-life of 1.3-2.2 hours. In the Phase-2a trial, LH concentrations increased dose-dependently; mean maximum change from baseline of 82.4 IU/L at 24.8 hours was observed after administration of 3μg MVT-602 and remained above 15 IU/L for 33 hours. Time to ovulation following drug administration was 3.3-3.9 days (MVT-602), 3.4 days (triptorelin), and 5.5 days (placebo). Ovulation occurred within 5 days of administration in 100% (3 μg), 88% (1μg), 82% (0.3μg), and 75% (0.1μg), of women after MVT-602, 100% after triptorelin, and 60% after placebo. Conclusions MVT-602 induces LH concentrations of similar amplitude and duration as the physiological mid-cycle LH surge with potential utility for induction of oocyte maturation and ovulation during MAR

    Drug-induced loss of imprinting revealed using bioluminescent reporters of Cdkn1c.

    Get PDF
    Genomic imprinting is an epigenetically mediated mechanism that regulates allelic expression of genes based upon parent-of-origin and provides a paradigm for studying epigenetic silencing and release. Here, bioluminescent reporters for the maternally-expressed imprinted gene Cdkn1c are used to examine the capacity of chromatin-modifying drugs to reverse paternal Cdkn1c silencing. Exposure of reporter mouse embryonic stem cells (mESCs) to 5-Azacytidine, HDAC inhibitors, BET inhibitors or GSK-J4 (KDM6A/B inhibitor) relieved repression of paternal Cdkn1c, either selectively or by inducing biallelic effects. Treatment of reporter fibroblasts with HDAC inhibitors or GSK-J4 resulted in similar paternal Cdkn1c activation, whereas BET inhibitor-induced loss of imprinting was specific to mESCs. Changes in allelic expression were generally not sustained in dividing cultures upon drug removal, indicating that the underlying epigenetic memory of silencing was maintained. In contrast, Cdkn1c de-repression by GSK-J4 was retained in both mESCs and fibroblasts following inhibitor removal, although this impact may be linked to cellular stress and DNA damage. Taken together, these data introduce bioluminescent reporter cells as tools for studying epigenetic silencing and disruption, and demonstrate that Cdkn1c imprinting requires distinct and cell-type specific chromatin features and modifying enzymes to enact and propagate a memory of silencing

    Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression

    Get PDF
    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. © 2012 Clause et al

    Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations.

    No full text
    Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity.165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100.There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up.Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses

    Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria

    Get PDF
    Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities. Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b. The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity. The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase. Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type. These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane

    Microgenomic Analysis in Skeletal Muscle: Expression Signatures of Individual Fast and Slow Myofibers

    Get PDF
    BACKGROUND: Skeletal muscle is a complex, versatile tissue composed of a variety of functionally diverse fiber types. Although the biochemical, structural and functional properties of myofibers have been the subject of intense investigation for the last decades, understanding molecular processes regulating fiber type diversity is still complicated by the heterogeneity of cell types present in the whole muscle organ. METHODOLOGY/PRINCIPAL FINDINGS: We have produced a first catalogue of genes expressed in mouse slow-oxidative (type 1) and fast-glycolytic (type 2B) fibers through transcriptome analysis at the single fiber level (microgenomics). Individual fibers were obtained from murine soleus and EDL muscles and initially classified by myosin heavy chain isoform content. Gene expression profiling on high density DNA oligonucleotide microarrays showed that both qualitative and quantitative improvements were achieved, compared to results with standard muscle homogenate. First, myofiber profiles were virtually free from non-muscle transcriptional activity. Second, thousands of muscle-specific genes were identified, leading to a better definition of gene signatures in the two fiber types as well as the detection of metabolic and signaling pathways that are differentially activated in specific fiber types. Several regulatory proteins showed preferential expression in slow myofibers. Discriminant analysis revealed novel genes that could be useful for fiber type functional classification. CONCLUSIONS/SIGNIFICANCE: As gene expression analyses at the single fiber level significantly increased the resolution power, this innovative approach would allow a better understanding of the adaptive transcriptomic transitions occurring in myofibers under physiological and pathological condition

    Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets.

    Get PDF
    <div><p>Background</p><p>Pulmonary first pass filtration of particles marginally exceeding ∼7 µm (the size of a red blood cell) is used routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration, and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this broad grouping, which patients were at higher risk of stroke.</p><p>Methodology</p><p>497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were examined using logistic regression, receiver operating characteristic analyses, and platelet studies.</p><p>Principal Findings</p><p>Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52 (IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92, 1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 µmol/L compared to mid-normal range (7–27 µmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021).</p><p>Significance</p><p>These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are likely to include enhanced aggregation of circulating platelets.</p></div

    Epigenetic change induced by in utero dietary challenge provokes phenotypic variability across multiple generations of mice

    Get PDF
    Transmission of epigenetic information between generations occurs in nematodes, flies and plants, mediated by specialised small RNA pathways, histone H3K9me3, H3K27me3, H4K16ac and DNA methylation 1-3 . In higher vertebrates, epidemiological and experimental evidence supports similar trans-generational effects 4,5 although the mechanisms that underpin these are incompletely understood 6-9 . We generated a luciferase reporter knock-in mouse for the imprinted Dlk1 locus, to visualise and track epigenetic fidelity across generations. We showed that exposure to high-fat diet (HFD) in pregnancy provokes sustained re-expression of the normally silent maternal Dlk1 allele in offspring, coincident with increased DNA methylation at the Dlk1 sDMR . Interestingly, maternal Dlk1 mis-expression was also evident in the next generation (F2), exclusively in animals derived from F1-exposed females. Oocytes from these females showed altered microRNA and gene expression, without any major changes in underlying DNA methylation, and correctly imprinted Dlk1 expression resumed in subsequent generations (F3 onwards). Our results reveal how canonical and non-canonical imprinting mechanisms enable the foetal epigenome to adapt to in utero challenge to modulate the properties of two successive generations of offspring
    • …
    corecore