63 research outputs found

    Late-season biosynthesis of leaf fatty acids and n-alkanes of a mature beech (Fagus sylvatica) tree traced via13CO2 pulse-chase labelling and compound-specific isotope analysis

    Get PDF
    Leaf cuticular waxes play an important role in reducing evapotranspiration via diffusion. However, the ability of mature trees to regulate the biosynthesis of waxes to changing conditions (e.g., drought, light exposition) remain an open question, especially during the late growing season. This holds also true for one of the most widely distributed trees in Central Europe, the European beech tree (Fagus sylvatica L.). In order to investigate the ongoing formation of wax constituents like alkanes and fatty acids, we conducted a 13CO2 pulse-chase labelling experiment on sun-exposed and shaded branches of a mature beech tree during the late summer 2018. The 13C-label was traced via compound-specific δ13C isotope analysis of n-alkanes and fatty acids to determine the de-novo biosynthesis within these compound classes. We did not observe a significant change in lipid concentrations during the late growing season, but we found higher n-alkane concentrations in sun-exposed compared to shaded leaves in August and September. The n-alkane and fatty acid composition showed ongoing modifications during the late growing season. Together with the uptake and following subsequent decrease of the 13C-label, this suggests ongoing de-novo biosynthesis, especially of fatty acids in European beech leaves. Moreover, there is a high variability in the 13C-label among individual branches and between sun-exposed and shaded leaves. At the same time, sun-exposed leaves invest more of the assimilated C into secondary metabolites such as lipids than shaded leaves. This indicates that the investigated mature beech tree could adjust its lipid production and composition in order to acclimate to changes in microclimates within the tree crown and during the investigated period

    Spallation Neutron Production by 0.8, 1.2 and 1.6 GeV Protons on various Targets

    Full text link
    Spallation neutron production in proton induced reactions on Al, Fe, Zr, W, Pb and Th targets at 1.2 GeV and on Fe and Pb at 0.8, and 1.6 GeV measured at the SATURNE accelerator in Saclay is reported. The experimental double-differential cross-sections are compared with calculations performed with different intra-nuclear cascade models implemented in high energy transport codes. The broad angular coverage also allowed the determination of average neutron multiplicities above 2 MeV. Deficiencies in some of the models commonly used for applications are pointed out.Comment: 20 pages, 32 figures, revised version, accepted fpr publication in Phys. Rev.

    Impact of motion compensation and partial volume correction for ¹⁸F-NaF PET/CT imaging of coronary plaque

    Get PDF
    Recent studies have suggested that ¹⁸F-NaF-PET enables visualization and quantification of plaque micro-calcification in the coronary tree. However, PET imaging of plaque calcification in the coronary arteries is challenging because of the respiratory and cardiac motion as well as partial volume effects. The objective of this work is to implement an image reconstruction framework, which incorporates compensation for respiratory as well as cardiac motion (MoCo) and partial volume correction (PVC), for cardiac ¹⁸F-NaF PET imaging in PET/CT. We evaluated the effect of MoCo and PVC on the quantification of vulnerable plaques in the coronary arteries. Realistic simulations (Biograph TPTV, Biograph mCT) and phantom acquisitions (Biograph mCT) were used for these evaluations. Different uptake values in the calcified plaques were evaluated in the simulations, while three "plaque-type" lesions of 36, 31 and 18 mm³ were included in the phantom experiments. After validation, the MoCo and PVC methods were applied in four pilot NaF-PET patient studies. In all cases, the MoCo-based image reconstruction was performed using the STIR software. The PVC was obtained from a local projection (LP) method, previously evaluated in preclinical and clinical PET. The results obtained show a significant increase of the measured lesion-to-background ratios (LBR) in the MoCo+PVC images. These ratios were further enhanced when using directly the tissue-activities from the LP method, making this approach more suitable for the quantitative evaluation of coronary plaques. When using the LP method on the MoCo images, LBR increased between 200% and 1119% in the simulated data, between 212% and 614% in the phantom experiments and between 46% and 373% in the plaques with positive uptake observed in the pilot patients. In conclusion, we have built and validated a STIR framework incorporating MoCo and PVC for ¹⁸NaF PET imaging of coronary plaques. First results indicate an improved quantification of plaque-type lesions

    Late-season biosynthesis of leaf fatty acids and n-alkanes of a mature beech (Fagus sylvatica) tree traced via13CO2 pulse-chase labelling and compound-specific isotope analysis

    Full text link
    Leaf cuticular waxes play an important role in reducing evapotranspiration via diffusion. However, the ability of mature trees to regulate the biosynthesis of waxes to changing conditions (e.g., drought, light exposition) remain an open question, especially during the late growing season. This holds also true for one of the most widely distributed trees in Central Europe, the European beech tree (Fagus sylvatica L.). In order to investigate the ongoing formation of wax constituents like alkanes and fatty acids, we conducted a 13^{13}CO2_{2} pulse-chase labelling experiment on sun-exposed and shaded branches of a mature beech tree during the late summer 2018. The 13^{13}C-label was traced via compound-specific δ13^{13}C isotope analysis of n-alkanes and fatty acids to determine the de-novo biosynthesis within these compound classes. We did not observe a significant change in lipid concentrations during the late growing season, but we found higher n-alkane concentrations in sun-exposed compared to shaded leaves in August and September. The n-alkane and fatty acid composition showed ongoing modifications during the late growing season. Together with the uptake and following subsequent decrease of the 13^{13}C-label, this suggests ongoing de-novo biosynthesis, especially of fatty acids in European beech leaves. Moreover, there is a high variability in the 13^{13}C-label among individual branches and between sun-exposed and shaded leaves. At the same time, sun-exposed leaves invest more of the assimilated C into secondary metabolites such as lipids than shaded leaves. This indicates that the investigated mature beech tree could adjust its lipid production and composition in order to acclimate to changes in microclimates within the tree crown and during the investigated period

    Automatic data acquisition system for testing photovoltaic conversion chains performances in real conditions

    No full text
    The analyses of the performance of a complete photovoltaic system require precise measuring equipment in order to obtain reliable comparative results. This paper presents a computer-based instrumentation system suitable for a characterization of photovoltaic conversion chains. Consisting in a data acquisition stage, a data processor, photovoltaic generators and power conditioners, the system evaluates the respective efficiency of maximum power point tracker (MPPT) and power conditioner. The efficiency of unknown MPPT functions is estimated with great accuracy by means of an extremum control-based MPPT used as a reference. Efficiency evaluations of two photovoltaic battery chargers during 4 days illustrate the estimation procedure and the system test facilities

    4D numerical observer for lesion detection in respiratory-gated PET

    No full text
    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic 18F-fluorodeoxyglucose activity distributions were simulated using a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using GEANT4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected).Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was compared to the conventional 3D approach applied on the nongated and motion-corrected images. Results: On average, the proposed 4D numerical observer improved the detection SNR by 48.6% (p < 0.005), whereas the 3D methods on motion-corrected images improved by 31.0% (p < 0.005) as compared to the nongated method. For all different conditions of the lesions, the relative SNR measurement (Gain = SNR Observed/SNRNongated) of the 4D method was significantly higher than one from the motion-corrected 3D method by 13.8% (p < 0.02), where Gain4D was 1.49 ± 0.21 and Gain 3D was 1.31 ± 0.15. For the lesion with the highest amplitude of motion, the 4D numerical observer yielded the highest observer-performance improvement (176%). For the lesion undergoing the smallest motion amplitude, the 4D method provided superior lesion detectability compared with the 3D method, which provided a detection SNR close to the nongated method. The investigation on a structure of the 4D numerical observer showed that a Laguerre–Gaussian channel matrix with a volumetric 3D function yielded higher lesion-detection performance than one with a 2D-stack-channelized function, whereas a different kind of channels that have the ability to mimic the human visual system, i.e., difference-of-Gaussian, showed similar performance in detecting uniform and spherical lesions.The investigation of the detection performance when increasing noise levels yielded decreasing detection SNR by 27.6% and 41.5% for the nongated and gated methods, respectively. The investigation of lesion contrast and diameter showed that the proposed 4D observer preserved the linearity property of an optimal-linear observer while the motion was present. Furthermore, the investigation of the iteration and subset numbers of the OSEM algorithm demonstrated that these parameters had impact on the lesion detectability and the selection of the optimal parameters could provide the maximum lesion-detection performance. The proposed 4D numerical observer outperformed the other observers for the lesion-detection task in various lesion conditions and motions. Conclusions: The 4D numerical observer shows substantial improvement in lesion detectability over the 3D observer method. The proposed 4D approach could potentially provide a more reliable objective assessment of the impact of respiratory-gated PET improvement for lesion-detection tasks. On the other hand, the 4D approach may be used as an upper bound to investigate the performance of the motion correction method. In future work, the authors will validate the proposed 4D approach on clinical data for detection tasks in pulmonary oncology
    corecore