20 research outputs found

    The prevalence of IgE-dependent food allergy in asthmatic children

    Get PDF

    Effects of air pollution and the introduction of the London Low Emission Zone on the prevalence of respiratory and allergic symptoms in schoolchildren in East London: a sequential cross-sectional study

    Get PDF
    The adverse effects of traffic-related air pollution on children’s respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8–9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00–1.02), NO2 (1.03, 1.00–1.06), PM10 (1.16, 1.04–1.28) and PM2.5 (1.38, 1.08–1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions

    Residential Proximity to a Major Roadway Is Associated with Features of Asthma Control in Children

    Get PDF
    BACKGROUND: While several studies suggest that traffic-related air pollutants are detrimental for respiratory health, few studies have examined relationships between residential proximity to a major roadway and asthma control in children. Furthermore, a major limitation of existing research is reliance on self-reported outcomes. We therefore determined the spatial relationship between the distance from a major roadway and clinical, physiologic and inflammatory features of asthma in a highly characterized sample of asthmatic children 6-17 years of age across a wide range of severities. We hypothesized that a closer residential proximity to a major roadway would be associated with increased respiratory symptoms, altered pulmonary function and a greater magnitude of airway and systemic inflammation. METHODOLOGY/PRINCIPAL FINDINGS: 224 children 6-17 years with confirmed asthma completed questionnaires and underwent spirometry, plethysmography, exhaled nitric oxide determination, exhaled breath condensate collection and venipuncture. Residential distance from a major roadway was determined by mapping the geographic coordinates of the residential address in Geographic Information System software. The distance between the home address and the nearest major roadway was calculated according to the shortest distance between the two points (i.e., "as the crow flies"). Asthmatic children living in closer proximity to a major roadway had an increased frequency of wheezing associated with increased medication requirements and more hospitalizations even after controlling for potential confounders. These children also had increased airway resistance, increased airway inflammation reflected by a lower breath condensate pH, and higher plasma EGF concentrations. CONCLUSIONS/SIGNIFICANCE: These findings suggest that closer residential proximity to a major roadway is associated with poorer asthma control in school-age children. Assessment of residential proximity to major roadways may be useful in the clinical evaluation of asthma in children

    Air pollution, fetal and infant tobacco smoke exposure, and wheezing in preschool children: a population-based prospective birth cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Air pollution is associated with asthma exacerbations. We examined the associations of exposure to ambient particulate matter (PM<sub>10</sub>) and nitrogen dioxide (NO<sub>2</sub>) with the risk of wheezing in preschool children, and assessed whether these associations were modified by tobacco smoke exposure.</p> <p>Methods</p> <p>This study was embedded in the Generation R Study, a population-based prospective cohort study among 4,634 children. PM<sub>10</sub> and NO<sub>2</sub> levels were estimated for the home addresses using dispersion modeling. Annual parental reports of wheezing until the age of 3 years and fetal and infant tobacco smoke exposure was obtained by questionnaires.</p> <p>Results</p> <p>Average annual PM<sub>10</sub> or NO<sub>2</sub> exposure levels per year were not associated with wheezing in the same year. Longitudinal analyses revealed non-significant tendencies towards positive associations of PM<sub>10</sub> or NO<sub>2</sub> exposure levels with wheezing during the first 3 years of life (overall odds ratios (95% confidence interval): 1.21 (0.79, 1.87) and 1.06 (0.92, 1.22)) per 10 μg/m<sup>3</sup> increase PM<sub>10</sub> and NO<sub>2</sub>, respectively). Stratified analyses showed that the associations were stronger and only significant among children who were exposed to both fetal and infant tobacco smoke (overall odds ratios 4.54 (1.17, 17.65) and 1.85 (1.15, 2.96)) per 10 μg/m<sup>3</sup> increase PM<sub>10</sub> and NO<sub>2</sub>, respectively (p-value for interactions <0.05).</p> <p>Conclusions</p> <p>Our results suggest that long term exposure to traffic-related air pollutants is associated with increased risks of wheezing in children exposed to tobacco smoke in fetal life and infancy. Smoke exposure in early life might lead to increased vulnerability of the lungs to air pollution.</p

    Short-term relationships between emergency hospital admissions for respiratory and cardiovascular diseases and fine particulate air pollution in Beirut, Lebanon

    No full text
    International audienceHigh levels of major outdoor air pollutants have been documented in Lebanon, but their health effects remain unknown. The Beirut Air Pollution and Health Effects study aimed to determine the relationship between short-term variations in ambient concentrations of particulate matter (PM10 and PM2.5) and emergency hospital admissions in the city of Beirut, and whether susceptible groups are more greatly affected. An autoregressive Poisson model was used to evaluate the association between daily concentrations of particulate matter and respiratory and cardiovascular emergency hospital admissions after controlling for confounders. All variables were measured during 1 year from January 2012 to December 2012. Relative risks of admissions for respiratory and cardiovascular diseases were calculated for an increase in 10 μg.m−3 of pollutant concentrations. Total respiratory admissions were significantly associated with the levels of PM10 (1.012 [95 % CI 1.004–1.02]) per 10 μg.m−3 rise in daily mean pollutant concentration for PM10 and 1.016 [95 % CI 1.000–1.032] for PM2.5 on the same day. With regard to susceptible groups, total respiratory admissions were associated with PM2.5 and PM10 within the same day in children (relative risk (RR), 1.013 and 1.014; 95 % confidence interval, 0.985–1.042 and 1.000–1.029 for PM2.5 and PM10, respectively). Moreover, a nearly significant association was found between particles and total circulatory admissions for adults and elderly groups in the same day. These results are similar to other international studies. Therefore, air pollution control is expected to reduce the number of admissions of these diseases in Lebanon
    corecore