9,673 research outputs found

    Surface charge mediated cell-surface interaction on piezoelectric materials

    Get PDF
    Cell–material interactions play an essential role in the development of scaffold-based tissue engineering strategies. Cell therapies are still limited in treating injuries when severe damage causes irreversible loss of muscle cells. Electroactive biomaterials and, in particular, piezoelectric materials offer new opportunities for skeletal muscle tissue engineering since these materials have demonstrated suitable electroactive microenvironments for tissue development. In this study, the influence of the surface charge of piezoelectric poly(vinylidene fluoride) (PVDF) on cell adhesion was investigated. The cytoskeletal organization of C2C12 myoblast cells grown on different PVDF samples was studied by immunofluorescence staining, and the interactions between single live cells and PVDF were analyzed using an atomic force microscopy (AFM) technique termed single-cell force spectroscopy. It was demonstrated that C2C12 myoblast cells seeded on samples with net surface charge present a more elongated morphology, this effect being dependent on the surface charge but independent of the poling direction (negative or positive surface charge). It was further shown that the cell deadhesion forces of individual C2C12 cells were higher on PVDF samples with an overall negative surface charge (8.92 ± 0.45 nN) compared to those on nonpoled substrates (zero overall surface charge) (4.06 ± 0.20 nN). These findings explicitly demonstrate that the polarization/surface charge is an important parameter to determine cell fate as it affects C2C12 cell adhesion, which in turn will influence cell behavior, namely, cell proliferation and differentiationPortuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019, UID/BIA/04050/2013, UID/BIO/04469, project POCI-01-0145-FEDER-028237 and under BioTecNorte operation (NORTE-01-0145-FEDER-000004). The authors also thank the FCT for the SFRH/BD/111478/2015 (S.R.) and SFRH/BPD/90870/2012 (C.R.) grants. Funds provided by FCT in the framework of EuroNanoMed 2016 call, Project LungChek ENMed/0049/2016 are also gratefully acknowledged. The authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) and from the Basque Government Industry and Education Department under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06

    AN INVERSE PROBLEM USING GREEN’S FUNCTIONS AND TFBGF METHOD TO INDENTIFICATE A MOVING HEAT SOURCE IN 3D HEAT CONDUCTION

    Get PDF
    Moving heat source are present in numerous practical problems in engineering. For example, machining process as the Gas tungsten arc welding (GTAW), laser welding, friction stirwleing process or milding problem. Moving heat source are also present in biological heating as the metabolism or in heat thermal treatment. All these cases, the heat input identification is a complex task and represents an important factor in the process optimization. The aim of this work is to investigate both the temperature field as the heat flux delivered to a piece during a process with moving heat source

    ANALITYCAL SOLUTION OF THE ONE DIMENSIONAL NONLINEAR TRANSIENT HEAT CONDUCTION PROBLEM USING GREEN’S FUNCTIONS

    Get PDF
    Analytical solutions showed to be an important and strong tool for understand thermal problems using mathematic tools. In this work we propose an approach about one dimensional analytical solution for a nonlinear transient heat conduction problem, were used mathematical elements such as Kirchhoff transformation, Green’s functions and the combination of them.  The combination of this two methods showed that was possible to determinate an analytical solution for the nonlinear thermal problem, and showed a good approximation when compared with results from numerical methods

    Spatio-temporal variations in the urban rhythm: the travelling waves of crime

    Get PDF
    This is the final version. Available from EDP Sciences via the DOI in this record.In the last decades, the notion that cities are in a state of equilibrium with a centralised organisation has given place to the viewpoint of cities in disequilibrium and organised from bottom to up. In this perspective, cities are evolving systems that exhibit emergent phenomena built from local decisions. While urban evolution promotes the emergence of positive social phenomena such as the formation of innovation hubs and the increase in cultural diversity, it also yields negative phenomena such as increases in criminal activity. Yet, we are still far from understanding the driving mechanisms of these phenomena. In particular, approaches to analyse urban phenomena are limited in scope by neglecting both temporal non-stationarity and spatial heterogeneity. In the case of criminal activity, we know for more than one century that crime peaks during specific times of the year, but the literature still fails to characterise the mobility of crime. Here we develop an approach to describe the spatial, temporal, and periodic variations in urban quantities. With crime data from 12 cities, we characterise how the periodicity of crime varies spatially across the city over time. We confirm one-year criminal cycles and show that this periodicity occurs unevenly across the city. These ‘waves of crime’ keep travelling across the city: while cities have a stable number of regions with a circannual period, the regions exhibit non-stationary series. Our findings support the concept of cities in a constant change, influencing urban phenomena—in agreement with the notion of cities not in equilibrium.Leibniz AssociationArmy Research OfficeScience Without Borders program (CAPES, Brazil
    • …
    corecore