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Abstract 

Cell-material interactions play an essential role in the development of scaffold-based tissue 

engineering strategies. Cell therapies are still limited in treating injuries when severe damage 

causes irreversible loss of muscle cells. Electroactive biomaterials and, in particular, 

piezoelectric materials offer new opportunities for skeletal muscle tissue engineering, since these 

materials have demonstrated suitable electroactive microenvironments for tissue development. In 

this study, the influence of the surface charge of piezoelectric poly(vinylidene fluoride) (PVDF) 

on cell adhesion was investigated. The cytoskeletal organization of C2C12 myoblast cells grown 

on different PVDF samples was studied by immunofluorescence staining and the interactions 

between single live cells and PVDF were analyzed using an Atomic Force Microscopy (AFM) 

technique termed Single Cell Force Spectroscopy (SCFS). It was demonstrated that C2C12 

myoblast cells seeded on samples with net surface charge present a more elongated morphology, 

this effect being dependent on the surface charge but independent of the poling direction 

(negative or positive surface charge). It was further shown that the cell de-adhesion forces of 

individual C2C12 cells were higher on PVDF samples with overall negative surface charge (8.92 

± 0.45 nN) compared to those on non-poled substrates (zero overall surface charge) (4.06 ± 0.20 

nN). These findings explicitly demonstrate that the polarization/surface charge is an important 

parameter to determine cell fate, as it affects C2C12 cell adhesion, which in turn will influence 

cell behavior, namely cell proliferation and differentiation. 
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1. Introduction 

Piezoelectric materials undergoing mechanical deformation generate an overall surface charge 

variation (direct piezoelectric effect) or expand/contract in the presence of an applied voltage 1. 

Piezoelectricity was first reported in 1880 by Jacques and Pierre Curie 2 and since then 

piezoelectric materials have been used in different areas such as energy harvesting, sensors and 

actuators, electronics, biotechnology and, more recently, tissue engineering 3-5. In particular, 

piezoelectric polymers are attractive for these applications due to them being easily tailored at 

the nano-, micro- and macroscale, produced at low-temperatures and at relatively low cost, and 

characterized by their flexibility and light weight 6. A variety of natural and synthetic 

piezoelectric polymers with different surface properties, such as surface charge or roughness, 

have recently emerged as biomaterials for tissue engineering applications 7. The use of natural 

polymers is still inferior to their synthetic counterparts due to their poor mechanical and 

electrical properties, as well as their often-difficult processing (i.e. isolation/extraction and the 

possibility to produce larger quantities) and their fabrication, which is less straightforward at this 

stage. As such, the synthetic piezoelectric polymers have been the largest group of biocompatible 

polymers used for tissue engineering 8, mainly acting as a passive support for cell proliferation 

and differentiation.  

Many of the major functions in cells and organs of the human body are controlled by ionic 

currents, electric fields, ion flow and voltage gradients produced by ion channels and pumps, 

which are key regulators of cell proliferation, migration and differentiation 9. Herein, it has been 

shown that piezoelectric materials can be relevant for tissue engineering strategies by enabling 

electrical stimulation via a mechanical stimulus, which is important for a range of tissues like 

bone, tendons, ligaments, cartilage and muscle 10-11. It is important to emphasize that skeletal 
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muscle is not a piezoelectric tissue, such as bone, but critically requires electro-mechanical 

stimulus to promote tissue growth and development and, for this reason, piezoelectric polymers 

represent a promising new approach for skeletal muscle tissue engineering 12. Piezoelectric 

polymeric biomaterials such as poly(vinylidene fluoride), PVDF, have been shown to have the 

necessary biocompatibility and deliver electro-mechanical stimulus to specific cell types 13-15. 

More specifically, the effect of PVDF surface charge on the proliferation 14 and differentiation 15 

of C2C12 myoblast cells has previously been demonstrated (Figure 1). Analysis of the cell 

differentiation showed that the maturation index of the formed myotubes was higher on 

electrically poled samples consisting of surface charges in the presence of differentiation 

medium, with no significant differences between the positively (“poled +”) and negatively 

(“poled –“) charged surfaces. C2C12 proliferation on β-PVDF showed that surface charge (of the 

poled samples) promoted the elongation of the cells after 1 day. In contrast to the morphology, 

where both polarizations (“poled +” and “poled –”) promoted the elongation, it was found that 

C2C12 proliferation was higher on the "poled –" β-PVDF. To rationalize effects from the 

physical surface properties, earlier studies have shown that β-PVDF films have a surface 

roughness of ≈ 42 nm from peak-to-peak, with no differences between the non-poled and poled 

β-PVDF samples16. However, the polarization of the PVDF electroactive crystalline phase was 

shown to affect the wettability of the films. The non-poled β-PVDF films are more hydrophobic, 

with a contact angle of 76.8º, whereas the poled β-PVDF films with surface charge has lower 

contact angles of 31.8º and 51º for “poled +” and “poled –”, respectively 17, showing that surface 

charge and energy play a role in determining the C2C12 proliferation and differentiation.  
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Figure 1 - Schematic representation of the work on C2C12 myoblast proliferation and 

differentiation on β-PVDF films with different polarization states. 

 

However, the physical interactions and role of cell adhesion, i.e. cell-substrate forces, 

mediating these effects are not entirely clear, though there is increasing evidence of their 

relevance in transmitting signals in the development and maintenance of tissues, regulation of 

cell cycle, migration, differentiation and survival 18. Three stages characterize the static in vitro 

cell adhesion process: the initial stage is the attachment of the cell body to the material via ligand 

binding; subsequently, the cell body flattens and spreads due to reorganization of cytoskeletal 

actin; and lastly, the formation of focal adhesions between cell and the material due to the further 

actin organization and recruitment of integrins 19. The more cells that attach and spread on the 

material’s surface, the greater the number of cell adhesive bonds and, therefore, stronger cell 
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adhesion is expected. Similarly, the adhesion force is related to the number and strength of 

chemical bonds on the cell surface according to cell adhesion models 19-20. These dynamic 

processes of cell adhesion are inextricably linked to changes in cytoskeletal tension and 

activation of signaling cascades that regulate cell proliferation and differentiation (i.e. gene 

expression). Most studies to date correlate the material surface properties with cell proliferation 

and differentiation, which are typically ascertained using conventional staining and fluorescent 

techniques. Furthermore, the extent of the associated cell adhesion is still often extrapolated from 

morphological observations such as cells spreading or rounding up, without considering the 

strength of adhesion 21, or determined using general washing assays by counting the number of 

cells remaining on the substrate. Therefore, the binding specificity (e.g. type of integrin) and 

adhesion forces at the cell-material interface are not fully quantified, yet the latest models (e.g. 

clutch model) show they are critical for transmitting the signals from the material through to the 

cell’s interior 22. 

Numerous techniques have been developed to analyze cell adhesion events, including those of 

single cells 23. One of these techniques, Single Cell Force Spectroscopy (SCFS), is based on 

Atomic Force Microscopy (AFM) and represents a versatile approach to quantify single cell 

adhesion on different substrates, between different cell types, and is showing potential 

application in mechanobiology 24. The general idea of SCFS is to replace the tip of the AFM 

cantilever by a living cell 25. SCFS offers a large range of detectable forces (e.g. from 

piconewtons to several nanonewtons), where the measurement of cell detachment enables direct 

quantification of molecular-level interactions and the forces required to detach a single cell from 

the substrate. SCFS is a technique more suitable for shorter time studies, i.e. seconds to minutes, 
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as longer contact times and adhesion to the surface may eventually exceed the binding of the cell 

to the AFM cantilever. 

In this study, we aimed to further understand the effect of piezoelectric β-PVDF (poled samples) 

surface charge on the C2C12 myoblast cell adhesion. Morphological observations with 

immunofluorescence staining was used to investigate the cell interactions with two different 

PVDF surfaces, including those that are “non-poled” (overall zero charge) and “poled” (positive 

or negative surface charge). In addition, the Atomic Force Microscopy-based technique, Single 

Cell Force Spectroscopy, was used to provide further insight into the effect of surface charge on 

the de-adhesion forces and energy required to detach single cells from the PVDF surfaces. 

 

2. Materials and Methods 

2.1 Materials 

PVDF (Solef 5130, MW 1,000-1,200 kg/mol) and N,N-dimethylformamide (DMF) were 

purchased from Solvay and Merck, respectively.  

 

2.2 Preparation of the samples 

For the preparation of the PVDF films, the procedure detailed in 6 was applied. A 20% (w/w) 

solution of PVDF in DMF was prepared under magnetic stirring at room temperature until 

complete dissolution of the polymer. After that, the solution was spread on a clean glass 

substrate and heated (J.P. Selecta) at 220 ºC for 10 min for solvent evaporation and polymer 

melting. Then, the samples were cooled at room temperature. After that, the polymer is 

predominantly in the α-PVDF, so to obtain the piezoelectric phase, β-PVDF, stretching is carried 

out and films with a thickness around 110 µm were obtained 6, 26. Sample poling (orientation of 
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the dipolar moments along the thickness direction of the samples) was achieved by Corona 

discharge inside a home-made chamber at 10 kV and 10 µA, after an optimization procedure 27. 

The measured piezoelectric d33 coefficient of the poled samples is ≈ -24 pC.N-1. “Non-poled” 

samples present an overall zero net charge, whereas, once poled, β-PVDF samples can present an 

overall negative, “poled -”, or positive, “poled +”, surface charge 16.  

The surface free energy (γp) values of the PVDF samples were estimated using an adaptation of 

Young-Dupre equation detailed in 28. 

𝛾𝑝 =
𝛾𝑤

4
 (1 + cos 𝜃)2                                       (1) 

where θ0 is the contact angle at equilibrium and γw is the water surface energy, (73 mJ m-2). 

 

2.3 Cell Culture 

C2C12 myoblast cells (ATCC) were cultivated in basal medium (BM) with Dulbecco’s Modified 

Eagle’s Medium (DMEM, Gibco) with 4.5 g.L-1 containing 10% of Fetal Bovine Serum (FBS, 

Biochrom) and 1% of Penicillin/Streptomycin (P/S, Biochrom). The cells were grown in 75 cm2 

cell-culture flask at 37 ºC in a humidified air containing 5% CO2 atmosphere. Every two days, 

the culture medium was replaced. The cells were detached with 0.05% trypsin-EDTA upon 60-

70% confluence. For the AFM measurements and vinculin staining, a suspension of C2C12 with 

a density of 8x104 cells.mL-1 (CO2-independent media) and 0.8x104 cells.mL-1, respectively, was 

used. For vinculin staining, the suspension of C2C12 was prepared with and without serum for 

the immunofluorescence assays. 

 

2.4 Immunofluorescence staining 
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C2C12 cells, with and without protein presence, seeded on different samples were subjected to 

immunofluorescence staining in order to analyse the presence of focal adhesions contact after 3 h 

of culture in basal medium. The nucleus, actin and vinculin were stained by 4',6-diamidino-2-

phenylindole (DAPI), Tetramethylrhodamine B isothiocyanate (TRITC) and anti-vinculin−FITC 

antibody (Sigma-Aldrich), respectively. At this time, the medium of each well was removed and 

the cells were washed with PBS 1x and fixed in 4% formaldehyde for 10 minutes at 37 ºC. After 

this, the samples were again washed with PBS 1x and then incubated with anti-vinculin−FITC 

antibody (1:50 in PBS 1x) in the dark at room temperature for 1 h. The cells were subsequently 

counterstained with TRITC (1:200) and DAPI (1µg.mL-1) at room temperature in the dark for 30 

and 5 min, respectively. In the end, the samples were rinsed in PBS 1x and after with distilled 

water, and finally mounted on slides. The samples were visualized using a fluorescence 

microscope (Olympus Bx51) with the appropriate filter sets. The imageJ software was used to 

measure the length and width of the cytoskeleton and also the diameter of the nucleus on all the 

samples with feret’s diameter measurement. Experiments were performed on three samples for 

each condition, and by analyzing ten images for each sample. The graphs were designed in 

OriginPro 8.5, and Photoshop CS5 was used to assembly the figures for publication. Results 

were analyzed by Graph Pad Prism Version X for windows (Graph Pad Software, San Diego, 

CA, U.S.A.). To determine the statistical significances, one-way ANOVA was used. Differences 

were considered to be significant when p < 0.05. 

 

2.5 Single Cell Force Spectroscopy  

2.5.1. Cantilever functionalization  
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The cantilevers were incubated overnight in 50 µL droplets of biotin-BSA solution in a 

humidified chamber at 37 ºC. After that, the cantilevers were washed by immersing and gently 

moving them in 20 mL of PBS (without Ca2+ and Mg2+) filled into a petri dish, performing a total 

of three washes. The cantilevers were incubated for 30 min in 50 µL droplets of the diluted 

streptavidin solution in a humidified chamber at room temperature. Thereafter, the cantilevers 

were washed again three times in 20 mL PBS (without Ca2+/Mg2+), as previously described. To 

finish the functionalization, the cantilevers were incubated in 50 µL droplets of diluted 

concanavalin A-biotin solution in a humidified chamber for 30 min at room temperature. After 

this time, they were washed three times with PBS and stored in a petri dish containing 10 mL 

PBS (without Ca2+ or Mg2+) at 4 ºC for at least one week.  

 

2.5.2. Attachment of Single Cell onto AFM Probes  

SCFS was performed using a JPK Biowizard II Atomic Force Microscope (JPK, Germany) 

mounted on a fully automated Nikon inverted optical microscope. The AFM-inverted optical 

microscope was fully enclosed in a cell incubation system for temperature and humidity control. 

The PVDF film was placed in the liquid cell and 600 µl of CO₂-independent medium was 

injected, with heating applied to enable the CO2-independent media (without proteins) to reach 

thermal equilibration at 37 °C. The Concanavalin functionalized tipless cantilever was then 

brought into approximately 50 µm above the PVDF surface. A further 300 μl of CO₂-

independent medium containing the C2C12 cells with a concentration of approximately 

80,000/ml cells was then injected into the liquid cell and the cells allowed to settle onto the 

PVDF surface for a period of 5-10 min. Rounded up cells that were yet to adhere were located 

with the optical microscope and the functionalized AFM probe was positioned over a single cell. 
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The cell was attached manually to the apex of the cantilever by lowering the stepper motor in 1 

µm steps and making contact with the cell until an applied force of 0.5 nN had been reached. 

After attaching the cell, the cantilever was retracted 50 µm and the optical microscope was used 

to confirm that the cell was positioned correctly at the end of the cantilever. Afterwards, the 

single cell was allowed to adhere for 5 min to ensure the strength of cell attachment to the 

cantilever was greater than to the PVDF surface during the SCFS. According to previous studies, 

this procedure combined with the use of short cell contact times (e.g. seconds) with the substrate 

ensured that the cell adhesion to the cantilever was greater than adhesion to the opposing surface 

29.  

 

2.5.3. Force Measurements 

Force measurements were performed according to modifications of previous methods 30-31. After 

attachment of the cell, the live single cell probe was repositioned over a cell-free region of the 

PVDF surface and force-distance (F-D) curves were performed with a loading force of 500 pN, 

contact-time of 1 sec and retraction speed of 20 µm.sec-1 for all experiments. In this study, a 100 

µm z-extended travel stage (provided by the JPK Company) was employed to accommodate the 

longer-range interactions (~ 10-80 µm) between the cell and PVDF sample, which could be 

significantly greater than the standard z-travel stage (max 15 µm). At least 10 different cells 

were measured on each PVDF sample (non-poled and "poled -") and up to 20 force-distance, F-

D, curves collected for each cell (from 4 different positions on the sample), giving a total of 200 

F-D curves per sample for the analysis.  

 

2.5.4. Force-distance curve analysis 
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Analysis of the F-D curves was performed using the JPK Data Processing software (Version 

spm-5.1.11), which enabled the quantification of adhesion force, adhesion energy and 

detachment length. Raw curves were converted into F-D curves using the measured detection 

sensitivity and cantilever spring constant 32. Box-whisker plots were plotted using Origin Pro 

(2015) b9.2.272 and presented as the mean ± standard error of the mean.  

3. Results 

3.1 Cell adhesion on different β-PVDF materials 

In order to determine if there are significant differences in the cytoskeletal organization of 

C2C12 cells on the different β-PVDF samples, the cells were stained for vinculin (green), a focal 

adhesion protein, as well as F-actin (red). The fluorescent images obtained are presented in 

Figure 2. Vinculin is a 117 kDa cytoplasmic protein, a component of the membrane that is 

associated to the adhesion complexes, as these linker proteins connect the integrins (bound to the 

extracellular matrix (ECM)) to the actomyosin cytoskeleton 33. Also, vinculin is a key protein in 

the regulation of the contractile forces transmission whereby if the vinculin is absent or present, 

the contractile force generation is reduced or enhanced, respectively 34-35. As a first approach, a 

comparison of the density of vinculin-expressing focal adhesions (FAs), cell dimensions (length 

and width), and cell morphology was made between C2C12 myoblast cells on the different β-

PVDF film samples, including the non-poled, “poled +” and “poled –”. 
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Figure 2 - C2C12 myoblast cells cultured on the surface of polystyrene plate and β-PVDF films 

after 3h. Fluorescence images of DAPI stained cell nuclei (blue) in a), e), i) and m), vinculin 

expression (green) in b), f), j) and n), F-actin staining (cytoskeleton, red) in c), g), k) and o), 

overlay in  d), h), l) and p). For comparison cells cultured on polystyrene plate are shown in (a, b, 

c, d) and those on the different β-PVDF samples are “non-poled” in (e, f, g, h), “poled –” in (i, j, 

k, l) and “poled +” in (m, n, o, p). The scale bar (50 µm) is valid for all the images. 

 

Immunofluorescence was performed to observe myoblast adhesion and cytoskeletal structure on 

the different substrates. After 3 h of cell seeding, it was observed that the number of attached 

cells was similar for all the samples (Figure 2). Moreover, it was observed that C2C12 cells 

cultured on poled β-PVDF surfaces showed a greater spreading morphology compared with 
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those on the non-poled β-PVDF and control. In particular, the cell shape on the different 

substrates were different, especially compared to the control where the cells were distinctly 

rounded. In addition, staining with vinculin-FITC (green, Figure 2) showed that vinculin was 

present throughout the cytoplasm of C2C12 cell in all the samples, independently of the sample 

surface characteristics. In order to quantitatively assess their morphology, the values of length 

and width of the cytoskeleton, and the nucleus diameter were calculated (Table 1). Table 1 

shows that there was an approximately two-fold higher length-to-width ratio on the poled β-

PVDF samples, specifically ~ 2.80, compared to 1.33 for non-poled β-PVDF samples, indicating 

that the cells on the charged surfaces acquired a more elongated morphology. However, there 

was no significant difference in the cell dimensions, length-to-width ratio, and nucleus size 

between the differently poled PVDF (Table 1). Hence, these results demonstrate that changes in 

the C2C12 cell morphology and spreading in response to cell attachment to the PVDF surface 

was dependent on the existence of surface charge but independent of the polarization state 

(negative or positive surface charge). It is to notice that the wettability of the samples can have 

an important role on the cell adhesion, once the poled samples present higher hydrophilicity than 

the non-poled ones. It is to notice, nevertheless, that in the present case, the wettability of the 

samples is determined by the surface charge, once surface roughness and surface chemistry are 

the same, as those issues are not affected by the poling procedure16. In this way, the discussion is 

focused on the surface charge of the samples and its influence on the cell adhesion. 
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Table 1 - Length and width of the myoblast cells and nucleus diameter after 3 h of incubation in 

the β-PVDF samples with different surface charges. The values are presented as average ± SD. 

#p ≤ 0.0001 vs Control and *p ≤ 0.0001 vs Non-poled for each parameter. 

Samples Length (µm) Width (µm) Length/width 

Nucleus 

diameter (µm) 

Control 27.91 ± 4.88 22.84 ± 4.77 1.27 ± 0.21 10.73 ± 1.44 

Non-poled 30.81 ± 7.16 # 23.42 ± 5.13 1.33 ± 0.27 10.24 ± 1.34 

Poled + 41.02 ± 8.50 # * 15.33 ± 3.75 # * 2.81 ± 0.30 8.29 ± 1.39 # * 

Poled - 40.91 ± 6.47 # * 15.79 ± 2.56 # * 2.80 ± 0.33 8.26 ± 1.73 # * 

 

Figure 3 demonstrates the focal adhesions and the morphology of the C2C12 myoblast cells 

cultured on the β-PVDF samples. The higher resolution images of single cells after 3 h confirm 

that C2C12 myoblast cells cultured on poled samples are more elongated than those cultured on 

non-poled samples (figure 3), in agreement with the literature 14. Further, relative to the control 

sample, it seems that the vinculin expression and intensity are higher on all PVDF samples, 

forming a ring around the nucleus and smaller regions around the edge of the cell. There are no 

significative differences between the samples with and without proteins. 

 

 

 



 16 

 

Figure 3 - Immunofluorescence to analyze de focal adhesion by anti-vinculin FITC antibody 

staining of the C2C12 myoblast cells cultured 3 h on the control and β-PVDF samples (“non-

poled”, “poled -” and “poled +”) with and without proteins. The scale bar of 20 µm is valid for 

all the images. 

 

3.2 Single Cell Force Spectroscopy 

As mentioned, poled β-PVDF was previously shown to promote the elongation of C2C12 

myoblasts 14, which is in agreement with our observations in Figure 2 and 3, and the length-to-

width ratio values in Table 1. In the same study, the "poled –" β-PVDF, (negatively charged 

surface) enhanced the C2C12 proliferation (after 3 days) compared to the "non-poled" and 

“poled +” β-PVDF samples 14. Given that the cell adhesion is an important process underlying 
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these different cell responses 36, we attempt to evaluate the adhesion forces measured by SCFS. 

To this end, this SCFS initial investigation was used to directly probe the ability of the PVDF 

support the initial C2C12 myoblast cell adhesion without proteins. For that, the negatively 

charged (poled -) β-PVDF film versus the non-charged - zero average charge - (non-poled) β-

PVDF film were selected in order to study the influence of a charged surface relative to a non-

charged surface (non-poled sample). More specifically, the negatively charged surface was a 

focus as these surfaces enhanced the cell proliferation and differentiation [11]. For the SCFS 

experiments, a single C2C12 cell was attached to a functionalized cantilever (Figure 4a). The 

attached cell was then lowered to the β-PVDF substrate (Figure 4b) until a pre-set force was 

reached. After a contact time of 1-3 sec to allow the formation of adhesive interactions, the 

cantilever was retracted until the cell and substrate were completely separated (Figure 4c). 

During the approach and retraction of the cantilever, the force versus distance (F-D) curves were 

obtained and analysed.  
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Figure 4 - Single cell force spectroscopy. a) All the elements involved in the test and the AFM 

cantilever are positioned above the cell after the cantilever functionalization. b) The cantilever-

bound cell is lowered towards on the polymer support until a pre-set force is reached. c) After a 
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given preset contact time, the cantilever is retracted until cell and substrate are completely 

separated. Representative Force-Distance curves recorded while repeatedly detaching a single 

C2C12 myoblast cell from β-PVDF samples with different surface charges: d) “Non-poled” and 

e) “Poled -”.  

 

Figure 4d and 4e show the F-D curves for “non-poled” and “poled -” -PVDF obtained by 

SCFS, respectively. The F-D curves show that C2C12 myoblast cells on the negative poled β-

PVDF present significantly higher peak forces in the retraction curves (figure 4e) compared to 

those on the non-poled β-PVDF (figure 4d). Here, the peak maximum represents a measure of 

the bulk single cell de-adhesion 24 although the presence of subsequent peaks indicates the 

sequential detachment of fewer, remaining adhesive bonds. Thus, the F-D curves confirmed that 

higher de-adhesion forces occurred on the negatively charged β-PVDF surfaces, presumably due 

to stronger electrostatic interactions between the PVDF and charged cell surface molecules (non-

specific interaction) and also given that there are no proteins present in the medium. The larger 

magnitude of cell de-adhesion on the negatively charged β-PVDF surfaces was also evident by 

the presence of several larger peaks in Figure 4e, in addition to the greater de-adhesion energy 

that is given by the integrated area under the retraction curve. From analysis of the F-D curves, 

the maximum de-adhesion force (maximum peak force), de-adhesion energy (integrated area 

under the F-D curve) and the distance required to completely detach the cell from the surface are 

shown in Figure 5.  
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Figure 5 - Comparison of histograms for the a) maximum de-adhesion force, b) distance 

detachment and c) adhesion energy.    
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Whisker plots verified that the de-adhesion force of individual C2C12 cells was higher on “poled 

–” β-PVDF samples (8.92 ± 0.45 nN) than on non-poled substrates (4.06 ± 0.20 nN) (Figure 5a). 

The higher de-adhesion force value of “poled –” β-PVDF was associated with an increase in de-

adhesion energy (30.34 ± 1.52 × 10-15 J) and detachment distance (15.28 ± 0.76 µm) of the 

C2C12 myoblast cell compared to the non-poled surface (3.38 ± 0.17 × 10-15 J and 5.27 ± 0.26  

µm), respectively (Figure 5c and b). Furthermore, histograms of de-adhesion force (Figure 5a) 

and distance detachment (Figure 5b) revealed that the "poled -" -PVDF samples consisted to 

two peak distribution, but this was not observed for the de-adhesion energy (Figure 5c). The 

peak values of these distributions were 4 ± 0.2 nN and 22 ± 1.1 nN for the de-adhesion force, and 

12 ± 0.6 µm and 26 ± 1.3 µm for distance detachment. In contrast, the non-poled -PVDF 

samples showed only a single distribution, with the appearance of a half-normal distribution for 

de-adhesion force (Figure 5a) and distance detachment (Figure 5b). Specifically, the distribution 

for de-adhesion forces overlapped with the lower peak distribution of the "poled -" -PVDF 

samples (Figure 5a) though for the detachment distance the non-poled -PVDF distribution was 

lower than both distributions of the "poled -" -PVDF samples (Figure 5b).   

 

4. Discussion/Conclusion 

In this study, two different approaches were performed to distinguish the effect of PVDF 

material properties on the cell response, firstly via immunofluorescence staining of cells after 3 h 

in serum-containing media to elucidate the surface charge effects on the cell morphology and 

focal adhesion - vinculin. The results demonstrated that the poled (surface charged) PVDF 
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enhanced cell spreading morphology and greater expression of vinculin compared to the control, 

suggesting that this cell adhesion promoted by the electrical poling of PVDF is importantly 

related to previous observations of increased myoblast differentiation and maturation of 

myotubes on the same surfaces.  

Having confirmed the effects from our previous studies, the focus of the study was to then probe 

the C2C12 cell adhesive interactions on the non-poled versus poled PVDF. This was done using 

SCFS and on the negatively charged surfaces but in this case under serum-free conditions to 

investigate purely the initial electrostatic interactions. During the initial adhesion process, 

electrostatic interactions may also influence the myoblasts, promoting cell adhesion and 

subsequent responses such as morphology elongation. Thus, as a first step to elucidate the 

different cell adhesion mechanisms, such as electrostatic interaction, hydrophobic interaction, 

and biological interaction 37, the SCFS was performed in the aforementioned serum-free media. 

It has been commonly assumed that positively charged substrates promote cell adhesion through 

electrostatic interaction, e.g. through use of positively charged poly-l-lysine on cell culture 

substrates, with the negative charge of the cell membrane, while negatively charged substrates 

would be expected to suppress cell adhesion. However, previous studies demonstrate that cells 

adhere to both positively and negatively charged surfaces, even within short periods of 

incubation 37. Also, the influence of gold nanoparticles positively- and negatively-charged 

groups on their internalization by HOB cells was investigated and it has been shown that 

different surface charges can be internalized, irrespective of the presence or absence of serum 

proteins in the media 38. The surface charge density can also improve the penetration efficiency 

39. In this case, the wettability of the samples was calculated by measuring the WCA and the 

values confirm the results from the literature: 76.8º for non-poled and 51º for “poled –” samples. 
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With those values and equation 1, the surface free energy was calculated, the non-poled samples 

presenting a value of 27.5 mJ.m-2 and the “poled –” β-PVDF samples a value of 48.5 mJ.m-2. In 

this study, the SCFS directly verified that single C2C12 cells could adhere strongly to negatively 

charged surfaces without adsorbed proteins within contact times of seconds. In contrast, de-

adhesion forces comprising significantly fewer interactions occurring over much smaller 

distances, presumably also responsible for the reduced de-adhesion energy, were observed on the 

non-poled (non-charged). These findings are in agreement with a previous study of Hoshiba and 

co-authors, where it was demonstrated that the cell adhesion force was higher on charged 

surfaces, it is independent of the proteins presence or absence 37. 

The box-whisker plots showed clear differences in the cells de-adhesion, however, the histogram 

analysis revealed a more complex response of the cell de-adhesion. For instance, two peak 

distributions (blue peaks) were observed for the negatively poled surface, suggesting that the 

surface charge distribution of the “poled –” β-PVDF is not homogeneous due to the 

semicrystalline nature of the polymer 40, leading to some regions where the cell can form 

stronger adhesion and less adhesion in other regions. In particular, the peak values of ~ 20-25 nN 

in the higher distribution, are remarkably high for the single cell de-adhesion in comparison to 

those measured in other SCFS studies where the single cell forces are typically < 1 nN 41. We 

suggest that the high de-adhesion values may be related to either the high charge density of 

electroactive PVDF 1 and/or possible effects from the approach and contact of the cantilever with 

the PVDF surface that generates a mechanical stimulus, which in turn induces electrical 

polarization of the PVDF. 

In conclusion, the molecular interactions between C2C12 myoblast cell and piezoelectric 

polymer films, β-PVDF, with different surface charges, positive, negative or neutral, were 
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analysed with the AFM-based SCFS technique and immunofluorescence tests. It was 

demonstrated that surface charge promotes cell elongation and negative polarization improves 

cell-material adhesion. The de-adhesion energy required to detach the cell is higher on negative 

charged surfaces, which is concomitant with higher de-adhesion force exerted on the cantilever. 

This study is the first in vitro study to directly quantify the adhesive forces of cells on PVDF, 

including the effect of negative polarization state and surface charge of piezoelectric β-PVDF 

films on C2C12 cells. β-PVDF with polarization offers potential for skeletal muscle tissue 

engineering applications, allowing one to tune cell-surface interactions via electrical poling and 

also dynamically from the piezoelectric effect. 

A key issue is that the SCFS reveals a distinct difference in cell interaction (forces, energy) for 

poled versus non-poled samples which in turn affects the cell behaviour with respect to the cell 

adhesion. This fact is evidenced by the results obtained from the morphological and fluorescence 

observations (figure 2), where cells cultured on charged surfaces present an more elongated 

morphology, in agreement with previous studies showing that charged surfaces promote an 

earlier formation of myocytes, which are necessary for differentiation of myoblasts into 

myotubes, and consequently skeletal muscle tissue 12. Through physical attachment to actin 

filaments within the cellular network, focal adhesions allow cells to pull or push themselves 

along a matrix during migration. The substrate properties such as stiffness, topography and 

surface energy/charge are important parameters determining the resistance of the substrate to 

deformation by cell traction forces, which enable cells to travel with persistent direction 42. 

Molecular pathways underlying cell proliferation are also regulated via contractile forces 

imparted by the actin network and sensed by focal adhesions.  
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Regarding cell morphological observations and forces measured by SCFS, it is proposed that cell 

spreading and elongation correlates with larger adhesion to the charged surface. The increased 

tensile forces (i.e. the forces the cell feels when it “pulls” on the surface otherwise known as 

traction forces) activate actin expression/reorganization, enabling cells to increase its area on the 

substrate. From the SCFS, the charged groups of "poled -" -PVDF surface act as “ligands” 

based on electrostatic forces with charged cell membrane molecules, resulting in stronger 

adhesion forces. Thus, this will enable the cells to spread and elongate.  
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