98 research outputs found
Knowledge graphs for covid-19: An exploratory review of the current landscape
Background: Searching through the COVID-19 research literature to gain actionable clinical insight is a formidable task, even for experts. The usefulness of this corpus in terms of improving patient care is tied to the ability to see the big picture that emerges when the studies are seen in conjunction rather than in isolation. When the answer to a search query requires linking together multiple pieces of information across documents, simple keyword searches are insufficient. To answer such complex information needs, an innovative artificial intelligence (AI) technology named a knowledge graph (KG) could prove to be effective. Methods: We conducted an exploratory literature review of KG applications in the context of COVID-19. The search term used was "covid-19 knowledge graph". In addition to PubMed, the first five pages of search results for Google Scholar and Google were considered for inclusion. Google Scholar was used to include non-peer-reviewed or non-indexed articles such as pre-prints and conference proceedings. Google was used to identify companies or consortiums active in this domain that have not published any literature, peer-reviewed or otherwise. Results: Our search yielded 34 results on PubMed and 50 results each on Google and Google Scholar. We found KGs being used for facilitating literature search, drug repurposing, clinical trial mapping, and risk factor analysis. Conclusions: Our synopses of these works make a compelling case for the utility of this nascent field of research
Analysis of tumor texture on a pre-treatment CT scan predicts treatment outcome in NSCLC patients
Only abstrac
Analysis of tumor texture on a pre-treatment CT scan predicts treatment outcome in NSCLC patients
Only abstrac
Epigenetics in radiotherapy: Where are we heading?
Radiotherapy is an important component of anti-cancer treatment. However, not all cancer patients respond to radiotherapy, and with current knowledge clinicians are unable to predict which patients are at high risk of recurrence after radiotherapy. There is therefore an urgent need for biomarkers to guide clinical decision-making. Although the importance of epigenetic alterations is widely accepted, their application as biomarkers in radiotherapy has not been studied extensively. In addition, it has been suggested that radiotherapy itself introduces epigenetic alterations. As epigenetic alterations can potentially be reversed by drug treatment, they are interesting candidate targets for anticancer therapy or radiotherapy sensitizers. The application of demethylating drugs or histone deacetylase inhibitors to sensitize patients for radiotherapy has been studied in vitro, in vivo as well as in clinical trials with promising results. This review describes the current knowledge on epigenetics in radiotherapy
Combining Clinical, Pathological, and Demographic Factors Refines Prognosis of Lung Cancer: A Population-Based Study
In the treatment of lung cancer, an accurate estimation of patient clinical outcome is essential for choosing an appropriate course of therapy. It is important to develop a prognostic stratification model which combines clinical, pathological and demographic factors for individualized clinical decision making.A total of 234,412 patients diagnosed with adenocarcinomas or squamous cell carcinomas of the lung or bronchus between 1988 and 2006 were retrieved from the SEER database to construct a prognostic model. A model was developed by estimating a Cox proportional hazards model on 500 bootstrapped samples. Two models, one using stage alone and another comprehensive model using additional covariates, were constructed. The comprehensive model consistently outperformed the model using stage alone in prognostic stratification and on Harrell's C, Nagelkerke's R(2), and Brier Scores in the whole patient population as well as in specific treatment modalities. Specifically, the comprehensive model generated different prognostic groups with distinct post-operative survival (log-rank P<0.001) within surgical stage IA and IB patients in Kaplan-Meier analyses. Two additional patient cohorts (n = 1,991) were used as an external validation, with the comprehensive model again outperforming the model using stage alone with regards to prognostic stratification and the three evaluated metrics.These results demonstrate the feasibility of constructing a precise prognostic model combining multiple clinical, pathologic, and demographic factors. The comprehensive model significantly improves individualized prognosis upon AJCC tumor staging and is robust across a range of treatment modalities, the spectrum of patient risk, and in novel patient cohorts
Can predicting COVID-19 mortality in a European cohort using only demographic and comorbidity data surpass age-based prediction: An externally validated study.
peer reviewedOBJECTIVE: To establish whether one can build a mortality prediction model for COVID-19 patients based solely on demographics and comorbidity data that outperforms age alone. Such a model could be a precursor to implementing smart lockdowns and vaccine distribution strategies. METHODS: The training cohort comprised 2337 COVID-19 inpatients from nine hospitals in The Netherlands. The clinical outcome was death within 21 days of being discharged. The features were derived from electronic health records collected during admission. Three feature selection methods were used: LASSO, univariate using a novel metric, and pairwise (age being half of each pair). 478 patients from Belgium were used to test the model. All modeling attempts were compared against an age-only model. RESULTS: In the training cohort, the mortality group's median age was 77 years (interquartile range = 70-83), higher than the non-mortality group (median = 65, IQR = 55-75). The incidence of former/active smokers, male gender, hypertension, diabetes, dementia, cancer, chronic obstructive pulmonary disease, chronic cardiac disease, chronic neurological disease, and chronic kidney disease was higher in the mortality group. All stated differences were statistically significant after Bonferroni correction. LASSO selected eight features, novel univariate chose five, and pairwise chose none. No model was able to surpass an age-only model in the external validation set, where age had an AUC of 0.85 and a balanced accuracy of 0.77. CONCLUSION: When applied to an external validation set, we found that an age-only mortality model outperformed all modeling attempts (curated on www.covid19risk.ai) using three feature selection methods on 22 demographic and comorbid features
- …