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Radiotherapy is an important component of anti-cancer treatment. However, not all cancer patients
respond to radiotherapy, and with current knowledge clinicians are unable to predict which patients
are at high risk of recurrence after radiotherapy. There is therefore an urgent need for biomarkers to guide
clinical decision-making.

Although the importance of epigenetic alterations is widely accepted, their application as biomarkers in
radiotherapy has not been studied extensively. In addition, it has been suggested that radiotherapy itself
introduces epigenetic alterations. As epigenetic alterations can potentially be reversed by drug treatment,
they are interesting candidate targets for anticancer therapy or radiotherapy sensitizers. The application
of demethylating drugs or histone deacetylase inhibitors to sensitize patients for radiotherapy has been
studied in vitro, in vivo as well as in clinical trials with promising results. This review describes the cur-
rent knowledge on epigenetics in radiotherapy.

� 2014 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 111 (2014) 168–177
Background

Although radiotherapy (RT) is an important and effective ele-
ment of current cancer treatment [1], a subgroup of patients does
not respond to RT and has progressive disease or a recurrence
shortly after treatment ends. As maximal RT dose on the tumor
is determined by normal tissue tolerance, increasing radiation dose
is often unfeasible as it also increases adverse effects in healthy tis-
sues [2]. Also other efforts to optimize RT, such as precision in dose
delivery and optimization of treatment plans, are not beneficial for
some patients and large inter-individual differences in treatment
response are observed [3]. Cellular RT response is (partly) depen-
dent on the molecular composition of cells, but there is limited evi-
dence that predictive biomarkers can use this altered molecular
composition to predict radiosensitivity [3,4]. The ability to predict
RT response would be a valuable asset to physicians for several
reasons [5]. At the moment, prediction of RT outcome is based
on clinical parameters, such as tumor stage and grade [6]. Combin-
ing several clinical characteristics has led to the development of
publicly available predictive models for several cancer types
(www.predictcancer.org) [7–19]. However, variation in response
between patients with identical clinical characteristics indicates
that these models can be improved, for example by adding
blood-based (e.g. protein), DNA-based/molecular (e.g. epigenetic
modifications) or imaging (e.g. hypoxia-imaging) biomarkers [20].
Epigenetic modifications – general introduction

Gene expression can be influenced by many different aberra-
tions. Among the most studied epigenetic aberrations are DNA
methylation and histone modifications which have been shown
to have a crucial function in carcinogenesis and tumor progression
and are considered potential targets for anticancer therapy and/or
treatment sensitizers (Fig. 1). Epigenetics is a rapidly growing
research field, and several in-depth reviews on epigenetic altera-
tions are available (e.g. [21–27]).
DNA methylation

DNA methylation consists of the introduction of a methyl-group
(CH3) at the 50 position of the cytosine base in the DNA, established
by DNA methyltransferases (DNMTs) (Fig. 1). Although global
hypomethylation is frequently observed in cancer, the best
characterized epigenetic modification in malignant cells is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.radonc.2014.05.001&domain=pdf
http://www.predictcancer.org
http://dx.doi.org/10.1016/j.radonc.2014.05.001
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Fig. 1. Epigenetic regulation of gene expression. DNA is stored in the nucleus as chromatin. The building unit of chromatin is the nucleosome, which consists of eight histones
(two each of H2A, H2B, H3 and H4) with 147 base pairs of DNA wrapped around it. The histone tails protrude from the nucleosome and are available for post-translational
modification. Epigenetic regulation includes several mechanisms including DNA methylation, histone acetylation, and histone methylation that can, depending on the
combination of modifications, either lead to gene repression or gene activation. Me: Methylation; Ac: Acetylation; DNMTs: DNA methyltransferases; DNMTi: DNMT
inhibitors; HAT: histone acetyltransferases; HDAC: histone deacetylases; HDACi: HDAC inhibitors; HMT: histone methyltransferases; HDM: histone demethylases.
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hypermethylation in CpG islands (genomic regions containing high
amounts of cytosine bases followed by guanine bases) which are
present in 70% of all mammalian promoters [21,22]. However,
aberrant methylation has also been found within gene bodies
and CpG shores (conserved sequences upstream or downstream
of CpG islands) [21,28,29]. Recently, it was recognized that the
position of methylation is crucial for the consequences on
transcriptional levels [21,30], and the dynamic nature of DNA
methylation was confirmed [31,32]. Moreover, other forms of
DNA methylation (oxidation derivatives), such as 5-hydroxymeth-
ylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosin
(5caC), have been identified, emphasizing the complex nature of
these epigenetic alterations.

Our knowledge about the methylome has been greatly
expanded by whole-genome approaches and it seems clear that
both function and influence on transcription vary with the context.
These recent developments reveal complex interactions between
different molecular markers but will also improve the use of epige-
netic biomarkers in cancer [33,34]. Indeed, recent reports have
demonstrated that DNA methylation marks can be found in circu-
lating DNA from prostate cancer patients, and can be used to gen-
erate accurate, minimally-invasive epigenetic biomarkers [35].
Histone modifications

Histone modifications can alter electrostatic charges and recruit
binding proteins that are frequently part of chromatin remodeling
complexes, thereby making the chromatin more or less accessible
for other proteins, such as transcription factors. This influences
transcription and other DNA-based processes [33]. Currently, 16
types of histone modifications have been detected, the most com-
mon ones are acetylation and methylation [33]. To catalyze the
addition and removal of histone modifications, several enzymes
are involved, e.g. histone acetyltransferases (HATs) and histone
deacetylases (HDACs) (Fig. 1). Aberrant histone modification pat-
terns have been reported in several cancer types [36,37], and are
suggested as biomarkers of recurrence [38] and survival [39–42].

Cancer genetics and epigenetics have long been considered two
separate mechanisms but nowadays it is generally accepted that
both act together and take advantage of each other [34]. DNA
methylation can be detected and quantified by numerous technol-
ogies including genome-wide screening methods as well as
locus- or gene-specific high-resolution analysis in different tissue
samples and body fluids [43–46] obtained through non-invasive
procedures making DNA methylation a very suitable biomarker.
O6-methylguanine methyltransferase (MGMT) methylation (to
predict treatment response in glioblastoma) and glutathione
S-transferase P1 (GSTP1) methylation (to detect prostate cancer)
are two examples of promising epigenetic biomarkers proving
the applicability of DNA methylation as a biomarker [47–50].
Hypoxia – general introduction

Low tumoral oxygen levels (hypoxia) are known to decrease the
effectiveness of RT [51,52], however, the precise mechanisms caus-
ing radioresistance are not yet completely understood [53,54].

RT causes DNA damage either by direct ionization or indirectly
by DNA interaction of radicals formed by ionization of water sur-
rounding DNA [55] resulting in DNA single- or double-strand
breaks. Oxygen molecules react with these radicals, thereby chang-
ing the chemical composition of DNA strand breaks, causing them
to be recognized by enzymes of the DNA damage repair (DDR)
pathways [56]. Under hypoxic conditions, radicals undergo a
chemical reaction with free protons, restoring their original form.
This phenomenon counteracts the fixation of DNA damage and is
therefore a major cause of radioresistance [56–58].



170 Epigenetics in radiotherapy
Other possible causes of radioresistance under hypoxic condi-
tions can result from the induction of oxygen-sensitive signaling
pathways, such as pathways mediated by (1) the hypoxia-induc-
ible factor family of transcription factors (HIFs, and HIF-1 in partic-
ular), (2) unfolded protein response (UPR) or, (3) mammalian
target of rapamycin (mTOR) pathway [59]. These pathways affect
many biological processes, including mitosis, apoptosis and angio-
genesis, some of which are known to influence radiosensitivity
[55].

First, the HIF pathway is activated during moderate hypoxia
activating cellular processes such as angiogenesis and cell survival.
The interplay between HIF-1 and radiosensitivity appears to be
complex; some HIF-1-mediated effects enhance radioresistance,
others enhance radiosensitivity [55].

Second, under hypoxic conditions, the UPR program is activated
by endoplasmatic reticulum (ER) stress sensors in the ER mem-
brane (protein kinase-like ER kinase (PERK)/eukaryotic initiation
factor 2a (eIF2a), inositol requiring kinase 1 and activating tran-
scription factor 6) leading to inhibition of translation and activa-
tion of signaling pathways involved in protein folding [60,61].
Recently, especially eIF2a has been shown to be important for cell
survival, and its inhibition was associated with treatment response
improvement. eIF2a-deficient cells failed to produce enzymes
needed for glutathione synthesis and cysteine uptake leading to
elevated reactive oxygen species that are toxic for cells [61]. These
results indicate the importance of this pathway in determining
treatment response and as a possible target for radiosensitizers
[61].

Third, during hypoxia, mTOR activity is reduced preventing the
formation of eIF4F translation initiation complex; eventually caus-
ing repression of protein synthesis. eIf4E, a limiting factor in the
eIF4F complex, has previously been associated with malignancy
and poor outcome if overexpressed. Paradoxically, this overexpres-
sion is also associated with increased sensitivity to hypoxia-
induced cell death and RT in vitro and in vivo, possibly due to a
co-overexpression of 4E-BP1 [62].
Epigenetics in radiotherapy

Despite promising results in other cancer types [21,49,63–67],
the usefulness of epigenetic alterations (single marker, marker
panels or pathways) as potential prognostic or predictive biomark-
ers in RT has not been studied extensively (Table 1); available
Table 1
Epigenetic modifications associated with radiotherapy (response).

RT sensitivity RT resistance

DNA hypermethylation
TIMP3 [90] BRCA1 [73]
CDH1 [90] S100A6 [83]

RUNX3 [87,88]
CDKN2A [87]
RPRM [87]
CDKN1C [87]
TP73 [87,89]
CHFR [87]
MGMT [63,70–78,87]
TIMP3 [87]
HPP1 [87]
SERPINB5 [83]

DNA hypomethylation
CAT [83]
BNCI [83]

Pathways
PTEN/pAkt/p53 [94–96]
NRF2-Keap [92]
evidence on the connection between epigenetics and radiosensitiv-
ity is scarce and mostly based on in vitro or in vivo data [6,68].
Molecular markers

A well-known example of a predictive epigenetic biomarker is
MGMT methylation in glioblastoma [48,49,65]. MGMT encodes for
a DNA repair enzyme that counteracts the effect of alkylating treat-
ment by removing alkyl groups from guanine. Moreover, hydroxyl
radicals that are generated by radiation induce MGMT expression
[69]. Patients with a methylated MGMT promoter have a better sur-
vival following adjuvant chemotherapy or RT [70–72]. A recent
meta-analysis reports hazard ratios of approximately 0.7 for
patients with high-grade glioma receiving RT after surgery. As no
survival effect was observed in patients treated with surgery alone,
MGMT is probably a predictive biomarker, not a prognostic [70]. In
other solid tumors, MGMT methylation has been studied with vary-
ing results. In some tumors, such as cervix, MGMT methylation
seems to be associated with poor prognosis after (chemo)radio-
therapy [63,73–77] whereas no influence on RT outcome was
found for other cancers [78]. Although evidence for MGMT methyl-
ation as a predictive biomarker seems convincing, the optimal
method to assess MGMT methylation has not been established
yet and the Level of Evidence is insufficient (below Ia; the level cor-
responding to evidence from meta-analyses and randomized clin-
ical trials) for its use in current routine clinical practice [47,79].

In addition to MGMT as a possible methylation biomarker in RT,
several other markers have been suggested to have a prognostic
role. However, evidence is scarce, results often inconsistent, and
clinical studies in patient populations are often lacking. For these
reasons, none of these markers is expected to be useful in routine
clinical practice in the near future. Ataxia Telangiectasia Mutated
(ATM) [80,81] methylation has been associated with increased
radiosensitivity in vitro [82], but expression is highly heteroge-
neous and its contribution to radiosensitivity remains questionable
[83,84]. The impact of ATM methylation on toxicity has not been
studied yet [85]. In addition, some evidence suggests false-positive
incidence results for ATM methylation due to non-specific primer
design [86]. Other single methylation markers suggested to be
associated with poor RT response include RPRM (esophageal cancer
patients) [87], RUNX3 (esophageal cancer cell lines) [88], TP73 (cer-
vical cancer patients) [89] and BRCA1 (cervical cancer patients)
[73]. In contrast, TIMP3 and CDH1 methylation was associated with
a better response to RT in head and neck squamous cell carcinoma
RT induced alterations

DNA hypermethylation
CDKN2A [121]
SKOR2 [122]
IRX1 [122]
EBF3 [122]
SLC5A8 [122]
SEPT9 [122]
ADAMTS9 [120]

Radiotherapy (RT) DNA hypomethylation
Global [112–114]
FOXC1 [120]
TRAPPC9 [120]
AMIGO3 [120]
Loss of expression
DNMT1, 3a and 3b [112–114]
MBD2 [112–114]
MeCP2 [112–114]
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patients [90]. Some of these single markers have been studied
within a marker panel (CDKN2A, RPRM, CDKN1C, TP73, RUNX3,
CHFR, MGMT, TIMP3 and HPP1) showing decreased methylation in
RT responsive esophageal cancer patients [87]. Although these sin-
gle-marker studies indicate a role of specific epigenetic biomarkers
in determining RT response, the prognostic value of these markers
has not been validated in large patient populations yet, making
them inappropriate for clinical use at the moment.

Only one study has been published using a non-candidate mar-
ker approach. In this study, the RT-resistant non-small cell lung
cancer H1299 cell line showed a higher proportion of hypermethy-
lation (18.7%) as compared to the RT-sensitive H460 cell line
(15.9%), 1091 genes were identified as differentially methylated
genes, of which 747 genes were hypermethylated and 344
hypomethylated in H1299. Hypermethylated genes were involved
in multiple processes, such as cell–cell communication and signal
transduction, while hypomethylated genes were mostly involved
in transcriptional regulation. Four genes with the most significant
differences in methylation between cell lines were studied more
extensively, suggesting a role for SERPINB5 and S100A6 hyperme-
thylation and CAT and BNCI hypomethylation in radioresistance.
These results suggest that RT response is highly dependent on
overall methylation profile of the patient’s tumor [83]. Although
the results of this study indicate that epigenetic alterations (prior
to RT) might be associated with radioresistance, results are derived
from in vitro studies, have not been validated in patients yet. In
addition, the correlation between methylation and expression
has not been studied. It remains uncertain whether observed dif-
ferences between cell lines are indeed related to radiosensitivity,
and not merely the result of comparing two different cell lines.
Molecular pathways

A recent review indicated that the majority of hypermethylated
genes related to RT or chemotherapy outcome, were involved in
DDR, WNT-signaling or PI3K/MAPK signaling [68]. Each of these
can be activated through many mechanisms, including aberrant
DNA methylation, point or structural mutations or inactivation of
pathway negative regulators. Nevertheless it can be questioned
whether single-gene modifications alone can be responsible for
radiosensitivity [91]. Probably, (several) disrupted pathways deter-
mine a radiosensitive or -resistant phenotype. Following this
hypothesis, several studies investigated dysregulation of specific
pathways due to epigenetic events, and their influence on RT
response.

In prostate cancer cell lines, the Nrf2-Keap1 pathway, which is
activated upon UPR [61], has been reported to be deregulated due
to Keap1 inactivation by loss-of-function mutations or promoter
CpG hypermethylation, leading to increased Nrf2 expression. Inhi-
bition of the Nrf2-Keap1 pathway has been shown to sensitize
radioresistant DU-145 cells [92]. Radioresistant and doxorubicin-
resistant MCF-7 breast cancer cells (MCF-7/DOX) show lower over-
all methylation levels as compared to radiosensitive MCF-7 cells.
Treatment with methyl-donor S-adenosyl methionine (SAM)
resulted in increased radiosensitivity. In contrast, SAM treatment
led to a decreased radiosensitivity in MCF-7 cells, possibly due to
hypermethylation of specific genes. These results emphasize the
fine balance between overall methylation levels, methylation of
specific genes and the subsequent radiosensitivity [93]. In oral
squamous cell carcinoma, a gene-dosage effect was reported in
patients treated with surgery and adjuvant RT; patients had a
poorer disease-free survival with increasing activity of the Ras/
PI3K/AKT pathway [94]. Activation of this pathway has been asso-
ciated with radioresistance in vitro and in vivo [95,96]. The results
of these studies clearly indicate that specific pathways (partly) reg-
ulated by epigenetic events, can have an effect on radiosensitivity.
The clinical implications of these findings are however less clear at
the moment, as it is difficult to manipulate specific pathways in
order to improve radiosensitivity.

Despite increasing knowledge on other epigenetic events as his-
tone modifications and micro-RNAs, these phenomena have not
yet been assessed for their role in determining RT response.
Hypoxia and epigenetics

Recent literature describes four views on the extensive interac-
tion between epigenetics and hypoxia [97]. First, expression of von
Hippel-Lindau (VHL) and prolyl 4-hydroxylase domain protein 3
(PHD3), two genes that are responsible for the ubiquitination and
degradation of HIF in the presence of oxygen, are epigenetically
regulated. Silencing of these genes can lead to the formation of
transcriptionally active HIF under normoxia.

Second, epigenetic mechanisms maintain a transcriptionally
active chromatin confirmation around HIF binding site regions,
either through HIF-1a co-activation or through direct modifica-
tions of binding sites, thereby regulating HIF binding. During the
initial hypoxic response, epigenetic modifying enzymes, e.g. his-
tone acetyltransferase enzyme CBP/p300, are in direct contact with
HIF-1a participating in the co-activation of hypoxia-inducible
genes [97]. SRC-1 and TIF2, both members of the HIF-1a co-activa-
tion complex were also found to have HAT activity [98]. (Func-
tional) DNA methylation within consensus hypoxia response
elements has been reported, and it has been shown that hypoxia-
induced expression depends on the tissue-specific methylation sta-
tus [99–101]. As global methylation changes may result from
chronic hypoxic conditions, the HIF-dependent transcriptional pro-
file may be determined by the intensity and duration of hypoxia
[97].

Third, several histone demethylase genes, including some of the
Jumonji family (induced as a consequence of HIF binding during
hypoxia) are direct HIF-1 target genes [102]. These findings reveal
the possibility of direct hypoxic regulation of histone demethylas-
es, resulting in both active and inactive chromatin states.

Finally, global changes in histone modifications and DNA meth-
ylation are observed in response to hypoxia, resulting in transcrip-
tional activation or repression. For example, hypoxia has been
shown to increase H3K4me3 (an active mark), decrease
H3K27me3 (a repressive mark) and increase H3K27me3 (a repres-
sive mark) [103]. Exposure to anoxia has been described to induce
a 15–20% reduction in DNA methylation [104]. These latter find-
ings indicate that epigenetics has a further important role in the
adaptation and survival of cells that is not solely dependent on
interaction with HIF. As hypoxia is regarded a major component
of determining RT response, growing knowledge on the influence
of epigenetics in the hypoxic response emphasizes the importance
of epigenetics in RT.
Radiation as a cause of epigenetic alterations

RT effects on genetic alterations (or vice versa) have been stud-
ied extensively [105–111]. The effects on epigenetic alterations
however, have been studied less often [1] even though these alter-
ations potentially lead to changes in transcriptional activity and
thereby to altered cellular resistance to radiation [112] (Fig. 2,
Table 1).

RT causes global hypomethylation in vitro and in vivo, possibly
due to a decreased expression of DNMT1, DNMT3a/3b, MeCP2
and MBD2 [112–114]. This effect seems more pronounced after
fractionated RT, appears sex- and tissue-specific [115] and is per-
sistent, even after repair of radiation-induced DNA damage
[113,116–119]. As global hypomethylation has been linked to
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malignant transformations, radiation-induced DNA hypomethyla-
tion may be a marker of oncogenic transformation [116,119]. In
addition to global changes, locus-specific alterations, hypo- as well
as hypermethylation, have also been reported after radiation [120–
122]. An increase in methylation was observed in ADAMTS9, FOXC1,
TRAPPC9 [120] and CDKN2A [121] whereas AMIGO3 [120] showed a
decrease in methylation. Interestingly, in vitro studies show that
after a recovery period in which cells overcome the radiation-
induced growth-arrest, FOXC1 and TRAPPC9 showed a significant
methylation loss compared to mock-treated cells. As both genes
are involved in apoptosis, this hypomethylation might indicate
reduced apoptotic signaling resulting in regrowth of cells after
radiation [120].

Other locus-specific methylation changes after radiation have
been reported in SKOR2, IRX1, EBF3, SLC5A8 and SEPT9 [122].

Although these results indicate global and locus-specific
changes in DNA methylation after radiation, it was only recently
revealed that these alterations were indeed enriched in pathways
directly involved in radiation responses such as cell cycle regula-
tion, DDR and apoptosis. A recent study using a more epige-
nome-wide approach identified 15 genes and 23 genes that were
differentially methylated after radiation with 2 and 6 Gy respec-
tively. Strikingly, overall methylation patterns appeared to be
dose-dependent; cell cycle pathways tended to be hypermethylat-
ed directly after 2 Gy radiation, but hypomethylated at later time
points. These patterns were opposite after 6 Gy radiation and in
this case, the moment of switch from hypo- to hypermethylation
was associated with a significant arrest in the G2 phase of the cell
cycle. This suggests a direct correlation between methylation pat-
terns and the biological response to radiation, and implies that epi-
genetic alterations after radiation are not random. Similarly, a
higher radiation dose was associated with higher hypermethyla-
tion in apoptosis pathways and an increased senescence-like phe-
notype. Dose-dependent differences in methylation were however
not seen for genes involved in DDR; hypomethylation was the pre-
dominant alteration after both low- and high-dose radiation, par-
ticularly in NER, HR and NHEJ pathways [112].

As radioresistance has especially been reported in cancer stem
cells [123], radiation-induced methylation levels in these cells
seem particularly interesting. However, a recent study on mouse
embryonic stem cells did not show any changes in DNA methyla-
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Fig. 2. Radiotherapy-induced
tion levels after radiation [124]. Epigenetic alterations were also
observed in offspring of mice exposed to radiation [125,126] indi-
cating that they might be transmitted through the germline, lead-
ing to genomic destabilization, and a possible precursor for
carcinogenesis [125].

The use of epigenetic drugs

Based on the previously described results, epigenetic alterations
may be considered as potential targets for radiosensitization. This
may be achieved by the regulation of chromatin structure modifi-
cations, or by epigenetic manipulation of genes involved in cell
cycle, apoptosis or DNA repair. Over the past years, many epige-
netic drugs have been studied in vitro or in vivo, but with varying
results.
HDAC inhibitors

HDACs remove acetyl groups on histone tails and influence the
interaction between DNA molecules, histone proteins and chroma-
tin-associated complexes, resulting in the formation of heterochro-
matin and transcriptional deactivation. The FDA approved two
HDAC inhibitors (HDACi); vorinostat (also known as suberoylani-
lide hydroxamic acid; SAHA) for the treatment of relapsed and
refractory cutaneous T-cell lymphoma [127,128]. Additionally, val-
proic acid (VPA) was FDA approved for the treatment of epilepsy
and other seizure disorders, bipolar disorders, anxiety disorders,
schizophrenia and migraine headaches [129].

HDAC inhibitors can be divided in four structural classes (short-
chain fatty acids, hydroxamic acids, cyclic peptides and benzam-
ides) and affect mostly HDAC class I or II. HDACi predominantly
act by inducing differentiation, apoptosis and cell cycle arrest with
a preferred cytotoxicity for tumor cells [130]. For all HDACi, radio-
sensitizing effects have been reported that may either be explained
by chromatin conformation or a decreased repair capacity for dou-
ble-strand breaks [129].

Several studies have suggested that VPA causes radiosensitiza-
tion in vitro and in vivo [131,132], and clinical trials are currently
ongoing. Histone tails in euchromatin undergo hyperacetylation
and hypermethylation after VPA treatment, leading to decondensa-
tion of these compartments and to an increased number of sites for
DNA hypermethylation
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radiation-induced DNA damage [132]. However, histone-acetyla-
tion and methylation-independent effects are likely to also con-
tribute to radiosensitization [132]. Recent experiments suggest
that the radiosensitizing effect of VPA is limited to differentiated
cancer cells; in cells expressing cancer stem cell features, VPA even
had radioprotective properties [133,134]. Psammaplin A, a natural
marine product with cytotoxic effects in several cancer cell lines,
also has HDAC activity and enhances radiosensitivity in cell lines
possibly by an increase in radiation-induced apoptosis [135]. Other
radiosensitizing HDACi include sodium butyrate (NaB), phenylbu-
tyrate, tributyrin, MS275, PCI-24781, AR-42, LBH589 and trichosta-
tin A. These agents sensitize radioresistant cell lines originating
from melanoma [136,137], glioma/glioblastoma [138,139], squa-
mous cell [140–142], prostate [138], colon [143,144], cervical
[144], breast [145] and hepatocellular carcinoma [146]. However,
some HDACis (e.g. SAHA, MS275 and NaB) induce a reduction in
double-strand break repair capacity in human fibroblasts obtained
from healthy skin emphasizing their potential long-term hazards
[129].

In contrast, HDACi have been suggested as radioprotectors for
normal tissue when administered topically, possibly due to a
decrease in tumor necrosis factor (TNF)-a and transforming
growth factor (TGF)-b [147,148]. Although evidence is limited, it
indicates that HDACi might be used as a radioprotector under spe-
cific conditions [149].
DNMT inhibitors

As depletion of DNMTs results in global demethylation [150],
different DNMT inhibitors (DNMTi) have been studied as radiosen-
sitizers [128]. Two, 5-aza-cytidine (AZA; azacitidine) and 5-Aza-20-
deoxycytidine (DAC; decitabine), have been FDA-approved for
treating myelodysplastic syndromes, acute myeloid leukemia and
other myeloid syndromes in adults. DNMTi are nucleoside analogs
that are incorporated during the S-phase and that irreversibly bind
DNMTs to DNA thereby inhibiting them [128]. Because of this,
DNMTs are depleted and genes silenced by methylation can be
re-expressed. DNMTi are hypothesized to influence radiosensitiv-
ity through several mechanisms. First, as DNA synthesis inhibitors,
DNMTi can inhibit the repair of RT-induced DNA damage. In addi-
tion, they may reduce the number of tumor clonogens by a prefer-
ential cytotoxicity to proliferative cells and slow down cell
repopulation during RT. Finally, they may trigger apoptosis [2].

Increased radiosensitivity after AZA was observed in vitro for
several colorectal [91] and gastric cancer cell lines [151]. Removing
AZA returned radiation sensitivity to previous levels, except for
HCT116 cells. HCT116 cells deficient in DNMT3b and double-
knock-out HCT116 cells deficient for DNMT1 and DNMT3b showed
a trend toward increased RT sensitivity, but this was not seen in
cells deficient for DNMT1 alone. As methylation patterns between
these cell lines differ, this may indicate differentially active meth-
ylation-regulated genes associated with radiosensitivity [91].
However, not all in vitro studies show radiosensitizing effects of
AZA [135].

DAC treatment has been associated with increased radiosensi-
tivity in vitro as well, but there was no association between
drug-induced epigenetic alterations and radiosensitization. This
could indicate that DAC works through mechanisms other than
demethylation to influence radiosensitivity [152]. As DAC and
AZA are relatively toxic to normal cells, unstable in aqueous solu-
tions and cannot be taken orally, other (less toxic) DNMTi, such as
zebularine and 5-fluoro-20-deoxycytidine have been developed
[128] that have also been associated with radiosensitivity
[2,135,153].

Despite promising results, caution should be exercised. Most
results were generated in in vitro studies and should be validated
in vivo. Moreover, the effects of DNMTi combined with RT in
healthy tissue have not been assessed and there is conflicting evi-
dence on the (long-term) safety of DNMTi. Demethylating agents
also lead to normal tissue hypomethylation and there are indica-
tions that this effect can influence radiation-enhanced bystander
effects, secondary tumor risk and reactivation of silenced viruses
such as Epstein-Barr [91,154]. In vitro and in vivo studies suggest
increased mutation frequencies, chromosomal rearrangements,
decreased fertility and loss of offspring after azacitidine or decita-
bine [2]. Interestingly, normal cells seem to have reduced incorpo-
ration of epigenetic drugs relative to cancer cells, likely due to their
slower dividing rate. This may imply that even low doses will have
clinically relevant effects [2,151]. In an attempt to overcome some
of the problems of nucleoside DNMT inhibitors, non-nucleoside
inhibitors of DNMTs have recently been developed directly binding
to DNMT without being incorporated into the DNA. These com-
pounds have demethylating activities in vitro and in vivo and, for
some agents, clinical trials are underway [153].

Future studies, in vivo as well as clinical studies are needed to
evaluate multiple remaining problems. The optimal treatment
schedule for either DNMTi or HDACi has not been established
yet. Several schemes are used in studies and therefore it is difficult
to compare results. It has been suggested that combining HDACi
and DNMTi is more effective in increasing radiosensitivity as both
DNA methylation and histone acetylation are inhibited [150,155].
Even though this approach has been studied in non-RT settings,
studies evaluating a combination of epigenetic drugs as radiosensi-
tizers are scarce [135,155,156]. Further studies need to elucidate
the biological mechanisms of radiosensitivity caused by HDACi
and DNMTi in order to select the most effective radiosensitizer
(or perhaps combinations thereof).
The use of epigenetic biomarkers in radiotherapy: future
considerations

Despite growing interest and the growing evidence of an actual
link between epigenetic alterations and RT response, there are cur-
rently no epigenetic biomarkers for RT response ready for use in
daily clinical practice, or even ready for extensive clinical testing.
An increasing number of studies focus on epigenetic drugs, either
DNMTi or HDACi, as radiosensitizers but it is not known which
agent, or which combination is most effective and which dose reg-
imen should be used. Studies evaluating RT-induced normal tissue
toxicity after DNMTi or HDACi are scarce. Epigenetic drugs might
be effective at low doses only, but these regimens have not been
thoroughly tested and the mechanisms of action for many com-
pounds remain unclear [157,158]. Further, given the extensive
interaction between hypoxia and epigenetics, the microenviron-
ment might be crucial in determining the success of epigenetic
drugs. Recent studies suggest an increased efficacy of HDACi and
DNMTi under hypoxic conditions [159–162], thereby emphasizing
the need to consider the tumor’s microenvironment when studying
epigenetic drug effects.

Although epigenetic biomarkers encounter some of the same
problems as compared to general biomarker studies, they are also
confronted with several specific challenges.

In general, similar to genetic biomarker studies, epigenetic bio-
marker studies are often small and lack validation [6,163]. Single-
gene approaches disregard the highly multifactorial nature of
radiosensitivity and candidate-marker studies might miss
unknown, but highly relevant, biomarkers [6]. Recent technologi-
cal developments, such as epigenome-wide sequencing, may over-
come these problems [64] as no prior assumptions are made on
which genes should be studied [6] and several techniques are cur-
rently available (for an extensive review, see Ref. [164]), each with
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their corresponding (dis)advantages in terms of costs and covered
genomic regions. Without exception, all available whole-genome
methylation analyses methods require extensive bioinformatic
analysis; a growing number of tools for this are being developed
[164,165] but well-qualified and experienced bio-informaticians
are crucial to distinguish useful patterns from noise. Indeed, major
analytical questions remain unsolved, including the best way to
handle heterogeneity in tumor cellularity [166] or to integrate
diverse data-normalization protocols [167].

As the probability of false-positive findings is high, genome-
wide studies need extensive validation and careful experimental
design – including up-front power-analyses. For example, methyl-
ation profiles are strongly confounded with age, making properly
controlled cohorts of particular importance. Internal validation of
the utilized sequencing approach and corresponding computa-
tional methods is self-explanatory, and is incorporated in most
studies. Validation of identified genes or signatures in large, inde-
pendent study populations, and (if possible) in randomized clinical
trials has also been accepted as crucial [165], but the correct pro-
tocols remain controversial even in the better-characterized field
of mRNA-based biomarkers [168,169]. But studying the biological
role of a potential biomarker in vitro and in vivo should also be
an important part of biomarker development before use in patient
care [64].

A structured approach to identify clinically relevant markers
and constructing the most relevant prediction model, as well as
the use of whole-epigenome sequencing techniques, might over-
come some of the previous, more general problems current studies
are facing. But other problems remain. Studies aiming to enhance
radiation response by studying epigenetic alterations prediction
also encounter several specific challenges. To obtain the most rel-
evant prediction model, not only clinical or epigenetic predictors
should be included, but genomic, proteomic and imaging biomark-
ers should be included as well. As different alterations reflect dif-
ferent tumor development or progression pathways, biomarker
signatures monitoring all these different aspects may be more
accurate than signatures focusing on one biomarker type
exclusively.

It is becoming increasingly clear that methylation within pro-
moter CpG islands is not random, only methylation of specific loci
(core regions) can be regarded as functional, i.e. crucial for tran-
scriptional repression [170]. Identifying the core regions regulating
gene expression is therefore crucial when studying the clinical
value of DNA methylation.

Along this line, the location of the primers used to measure DNA
methylation seems critical for the final conclusions of a study
[64,170]. Optimal primer design to ensure evaluation of the most
relevant core regions is therefore one of the most important tasks
when designing epigenetic biomarker studies that aim to obtain
reliable clinical results. Core regions have also been observed out-
side the transcription start site region suggesting that larger
regions should be evaluated when studying the methylation status
of genes [170]. In addition, relevant methylation can occur in
regions with low CpG density, CpG island shores [171] and gene
clusters can become silenced by long-range epigenetic silencing.
This global gene silencing can simultaneously inactivate large
regions of the genome [170,172]. These recent discoveries indicate
that the mechanism of gene silencing by DNA methylation is much
more complex than initially thought and genes previously disre-
garded as potential epigenetic biomarkers may in fact be relevant
when taking the location of methylation into account.

Recent discoveries of alterations such as 5hmC, 5fC and 5caC
add another layer of complexity as current techniques cannot eas-
ily distinguish between different cytosine modifications. Neverthe-
less, epigenetic biomarkers could act as important complementary
markers that, combined with clinical variables, blood-based
and imaging biomarkers, can greatly improve prediction models
for RT.

Conclusion

Despite the increasing number of studies describing an associa-
tion between DNA methylation and RT response, many questions
remain unanswered. There is currently no DNA methylation mar-
ker, or marker panel, that can predict RT response. Other epigenetic
markers, such as histone modifications and miRNAs have not yet
been evaluated for their influence on RT response. In addition, radi-
ation can also cause epigenetic alterations. Although several stud-
ies have reported this, the clinical impact (if any) of this
observation is not clear. It can be hypothesized that RT-induced
epigenetic aberrations influence treatment outcome and should
therefore be monitored. Even though underlying biological mecha-
nisms have not been elucidated yet, a growing number of studies
focused on clinical applicability of epigenetic drugs as anticancer
treatments or radio sensitizers. None of these drugs have been
approved for this application yet but results seem promising and
it may only be a matter of time before the first epigenetic radiosen-
sitizer is introduced.
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