3,268 research outputs found
Dynamical Coulomb Blockade of Shot Noise
We observe the suppression of the finite frequency shot-noise produced by a
voltage biased tunnel junction due to its interaction with a single
electromagnetic mode of high impedance. The tunnel junction is embedded in a
quarter wavelength resonator containing a dense SQUID array providing it with a
characteristic impedance in the kOhms range and a resonant frequency tunable in
the 4-6 GHz range. Such high impedance gives rise to a sizeable Coulomb
blockade on the tunnel junction (roughly 30% reduction in the differential
conductance) and allows an efficient measurement of the spectral density of the
current fluctuations at the resonator frequency. The observed blockade of
shot-noise is found in agreement with an extension of the dynamical Coulomb
blockade theory
Competition between magnetic field dependent band structure and coherent backscattering in multiwall carbon nanotubes
Magnetotransport measurements in large diameter multiwall carbon nanotubes
(20-40 nm) demonstrate the competition of a magnetic-field dependent
bandstructure and Altshuler-Aronov-Spivak oscillations. By means of an
efficient capacitive coupling to a backgate electrode, the magnetoconductance
oscillations are explored as a function of Fermi level shift. Changing the
magnetic field orientation with respect to the tube axis and by ensemble
averaging, allows to identify the contributions of different Aharonov-Bohm
phases. The results are in qualitative agreement with numerical calculations of
the band structure and the conductance.Comment: 4 figures, 5 page
Adaptive optics imaging of P Cygni in Halpha
We obtained Halpha diffraction limited data of the LBV star P Cyg using the
ONERA Adaptive Optics (AO) facility BOA at the OHP 1.52m telescope on October
1997. Taking P Cyg and the reference star 59 Cyg AO long exposures we find that
P Cyg clearly exhibits a large and diffuse intensity distribution compared to
the 59 Cyg's point-like source. A deconvolution of P Cyg using 59 Cyg as the
Point Spread Function was performed by means of the Richardson-Lucy algorithm.
P Cyg clearly appears as an unresolved star surrounded by a clumped envelope.
The reconstructed image of P Cyg is compared to similar spatial resolution maps
obtained from radio aperture synthesis imaging. We put independent constraints
on the physics of P Cyg which agree well with radio results. We discuss future
possibilities to constrain the wind structure of P Cyg by using
multi-resolution imaging, coronagraphy and long baseline interferometry to
trace back its evolutionary status.Comment: 10 pages, 19 Encapsulated Postscript figure
A tunable, dual mode field-effect or single electron transistor
A dual mode device behaving either as a field-effect transistor or a single
electron transistor (SET) has been fabricated using silicon-on-insulator metal
oxide semiconductor technology. Depending on the back gate polarisation, an
electron island is accumulated under the front gate of the device (SET regime),
or a field-effect transistor is obtained by pinching off a bottom channel with
a negative front gate voltage. The gradual transition between these two cases
is observed. This dual function uses both vertical and horizontal tunable
potential gradients in non-overlapped silicon-on-insulator channel
Fluctuation-Dissipation Relations of a Tunnel Junction Driven by a Quantum Circuit
We derive fluctuation-dissipation relations for a tunnel junction driven by a
high impedance microwave resonator, displaying strong quantum fluctuations. We
find that the fluctuation-dissipation relations derived for classical forces
hold, provided the effect of the circuit's quantum fluctuations is incorporated
into a modified non-linear curve. We also demonstrate that all
quantities measured under a coherent time dependent bias can be reconstructed
from their dc counterpart with a photo-assisted tunneling relation. We confirm
these predictions by implementing the circuit and measuring the dc current
through the junction, its high frequency admittance and its current noise at
the frequency of the resonator.Comment: Publisehd as Physical Review Letters, 114, 12680
Aharonov-Bohm differential conductance modulation in defective metallic single-wall carbon nanotubes
Using a perturbative approach, the effects of the energy gap induced by the
Aharonov-Bohm (AB) flux on the transport properties of defective metallic
single-walled carbon nanotubes (MSWCNTs) are investigated. The electronic waves
scattered back and forth by a pair of impurities give rise to Fabry-Perot
oscillations which constitutes a coherent backscattering interference pattern
(CBSIP). It is shown that, the CBSIP is aperiodically modulated by applying a
magnetic field parallel to the nanotube axis. In fact, the AB-flux brings this
CBSIP under control by an additional phase shift. As a consequence, the extrema
as well as zeros of the CBSIP are located at the irrational fractions of the
quantity , where is the flux piercing the
nanotube cross section and is the magnetic quantum flux. Indeed,
the spacing between two adjacent extrema in the magneto-differential
conductance (MDC) profile is decreased with increasing the magnetic field. The
faster and higher and slower and shorter variations is then obtained by
metallic zigzag and armchair nanotubes, respectively. Such results propose that
defective metallic nanotubes could be used as magneto-conductance switching
devices based on the AB effect.Comment: 11 pages, 4 figure
Higher gait variability is associated with decreased parietal gray matter volume among healthy older adults
The objectives of this study were to examine the association of stride time variability (STV) with gray and white matter volumes in healthy older adults, and to determine the specific location of any parenchymal loss associated with higher STV. A total of 71 participants (mean age 69.0 +/- 0.8 years; 59.7 % female) were included in this study. All participants had a 1.0 Tesla 3D T1-weighted MRI of the brain to measure gray and white matter volumes. STV was measured at steady-state self-selected walking speed using an electronic footswitch system. We found an association between higher STV and lower gray matter volume in the right parietal lobe (e.g., angular gyrus, Brodmann area 39, cluster corrected pFWE = 0.035). There were no significant associations between STV and higher gray matter volume or change in white matter volume. To the best of our knowledge this study is the first to identify a significant association of higher STV with lower right parietal gray matter volume in healthy older adults
Design and optimization of electrochemical microreactors for continuous electrosynthesis
The study focuses on the design and construction, as well as the theoretical and experimental optimization of electrochemical filter press microreactors for the electrosynthesis of molecules with a high added value. The main characteristics of these devices are firstly a high-specific electrochemical area to increase conversion and selectivity, and secondly the shape and size of themicrochannels designed for a uniform residence time distribution of the fluid. A heat exchanger is integrated into the microstructured electrode to rapidly remove (or supply) the heat required in exo- or endothermic reactions. The microreactors designed are used to perform-specific electrosynthesis reactions such as thermodynamically unfavorable reactions (continuous NADH regeneration), or reactions with high enthalpy changes
Three different ways of implementing cycloidal computed tomography: a discussion of pros and cons
We present three implementation strategies
for cycloidal computed tomography. The latter refers to an
imaging concept that enables the acquisition of highresolution tomograms in a flexible manner (e.g. with x-ray
sources with a relatively large focal spot and detectors with
relatively large pixels). In cycloidal computed tomography,
the sample is rotated and laterally translated
simultaneously; with this scheme, each sample feature
follows a cycloidal trajectory. This has been shown to
reduce scanning time and delivered dose, while maintaining
a high resolution. The different ways of implementing this
method are: step-and-shoot, continuous unidirectional and
continuous back-and-forth translation. While step-andshoot acquisitions yields the best results and are easiest to
implement, they are also the most time-consuming. The
continuous unidirectional method can be implemented with
little effort and gives results comparable to step-and-shoot.
Finally, back-and-forth scans can be implemented easily
and provide similar results, although there appears to be a
small loss in image quality. We present a comprehensive
guide on using cycloidal sampling in practice
Composition of Kinetic Momenta: The U_q(sl(2)) case
The tensor products of (restricted and unrestricted) finite dimensional
irreducible representations of \uq are considered for a root of unity.
They are decomposed into direct sums of irreducible and/or indecomposable
representations.Comment: 27 pages, harvmac and tables macros needed, minor TeXnical revision
to allow automatic TeXin
- …