5,414 research outputs found

    Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere

    Full text link
    We consider the multi-dimensional generalisation of the problem of a sphere, with axi-symmetric mass distribution, that rolls without slipping or spinning over a plane. Using recent results from Garc\'ia-Naranjo (arXiv: 1805:06393) and Garc\'ia-Naranjo and Marrero (arXiv: 1812.01422), we show that the reduced equations of motion possess an invariant measure and may be represented in Hamiltonian form by Chaplygin's reducing multiplier method. We also prove a general result on the existence of first integrals for certain Hamiltonisable Chaplygin systems with internal symmetries that is used to determine conserved quantities of the problem.Comment: 23 pages, 1 figure. Submitted to the special issue of Theor. Appl. Mech. in honour of Chaplygin's 150th anniversar

    Reduction of Almost Poisson brackets and Hamiltonization of the Chaplygin Sphere

    Full text link
    We construct different almost Poisson brackets for nonholonomic systems than those existing in the literature and study their reduction. Such brackets are built by considering non-canonical two-forms on the cotangent bundle of configuration space and then carrying out a projection onto the constraint space that encodes the Lagrange-D'Alembert principle. We justify the need for this type of brackets by working out the reduction of the celebrated Chaplygin sphere rolling problem. Our construction provides a geometric explanation of the Hamiltonization of the problem given by A. V. Borisov and I. S. Mamaev

    Non-existence of an invariant measure for a homogeneous ellipsoid rolling on the plane

    Full text link
    It is known that the reduced equations for an axially symmetric homogeneous ellipsoid that rolls without slipping on the plane possess a smooth invariant measure. We show that such an invariant measure does not exist in the case when all of the semi-axes of the ellipsoid have different length.Comment: v2: Minor changes after journal review. This text uses the theory developed in arXiv:1304.1788 for the specific example of a homogeneous ellipsoid rolling on the plan

    The Hydrodynamic Chaplygin Sleigh

    Get PDF
    We consider the motion of rigid bodies in a potential fluid subject to certain nonholonomic constraints and show that it is described by Euler--Poincar\'e--Suslov equations. In the 2-dimensional case, when the constraint is realized by a blade attached to the body, the system provides a hydrodynamic generalization of the Chaplygin sleigh, whose dynamics are studied in detail. Namely, the equations of motion are integrated explicitly and the asymptotic behavior of the system is determined. It is shown how the presence of the fluid brings new features to such a behavior.Comment: 20 pages, 7 figure

    Unimodularity and preservation of volumes in nonholonomic mechanics

    Full text link
    The equations of motion of a mechanical system subjected to nonholonomic linear constraints can be formulated in terms of a linear almost Poisson structure in a vector bundle. We study the existence of invariant measures for the system in terms of the unimodularity of this structure. In the presence of symmetries, our approach allows us to give necessary and sufficient conditions for the existence of an invariant volume, that unify and improve results existing in the literature. We present an algorithm to study the existence of a smooth invariant volume for nonholonomic mechanical systems with symmetry and we apply it to several concrete mechanical examples.Comment: 37 pages, 3 figures; v3 includes several changes to v2 that were done in accordance to the referee suggestion

    Moving energies as first integrals of nonholonomic systems with affine constraints

    Get PDF
    In nonholonomic mechanical systems with constraints that are affine (linear nonhomogeneous) functions of the velocities, the energy is typically not a first integral. It was shown in [Fass\`o and Sansonetto, JNLS, 26, (2016)] that, nevertheless, there exist modifications of the energy, called there moving energies, which under suitable conditions are first integrals. The first goal of this paper is to study the properties of these functions and the conditions that lead to their conservation. In particular, we enlarge the class of moving energies considered in [Fass\`o and Sansonetto, JNLS, 26, (2016)]. The second goal of the paper is to demonstrate the relevance of moving energies in nonholonomic mechanics. We show that certain first integrals of some well known systems (the affine Veselova and LR systems), which had been detected on a case-by-case way, are instances of moving energies. Moreover, we determine conserved moving energies for a class of affine systems on Lie groups that include the LR systems, for a heavy convex rigid body that rolls without slipping on a uniformly rotating plane, and for an nn-dimensional generalization of the Chaplygin sphere problem to a uniformly rotating hyperplane.Comment: 25 pages, 1 figure. Final version prepared according to the modifications suggested by the referees of Nonlinearit

    The inhomogeneous Suslov problem

    Full text link
    We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal axis of inertia of the body, then the reduced equations are integrable and, in the generic case, possess a smooth invariant measure. Interestingly, in this generic case, the first integral that permits integration is transcendental and the density of the invariant measure depends on the angular velocities. We also study the Painlev\'e property of the solutions.Comment: 10 pages, 5 figure
    • …
    corecore