23 research outputs found

    LOX-1 and cancer: an indissoluble liaison

    No full text
    Recently, a strong correlation between metabolic disorders, tumor onset, and progression has been demonstrated, directing new therapeutic strategies on metabolic targets. OLR1 gene encodes the LOX-1 receptor protein, responsible for the recognition, binding, and internalization of ox-LDL. In the past, several studied, aimed to clarify the role of LOX-1 receptor in atherosclerosis, shed light on its role in the stimulation of the expression of adhesion molecules, pro-inflammatory signaling pathways, and pro-angiogenic proteins, including NF-kB and VEGF, in vascular endothelial cells and macrophages. In recent years, LOX-1 upregulation in different tumors evidenced its involvement in cancer onset, progression and metastasis. In this review, we outline the role of LOX-1 in tumor spreading and metastasis, evidencing its function in VEGF induction, HIF-1alpha activation, and MMP-9/MMP-2 expression, pushing up the neoangiogenic and the epithelial-mesenchymal transition process in glioblastoma, osteosarcoma prostate, colon, breast, lung, and pancreatic tumors. Moreover, our studies contributed to evidence its role in interacting with WNT/APC/beta-catenin axis, highlighting new pathways in sporadic colon cancer onset. The application of volatilome analysis in high expressing LOX-1 tumor-bearing mice correlates with the tumor evolution, suggesting a closed link between LOX-1 upregulation and metabolic changes in individual volatile compounds and thus providing a viable method for a simple, non-invasive alternative monitoring of tumor progression. These findings underline the role of LOX-1 as regulator of tumor progression, migration, invasion, metastasis formation, and tumor-related neo-angiogenesis, proposing this receptor as a promising therapeutic target and thus enhancing current antineoplastic strategies

    Characterization of MDPL Fibroblasts Carrying the Recurrent p.Ser605del Mutation in POLD1 Gene

    No full text
    Mandibular hypoplasia, deafness, and progeroid features, with concomitant lipodystrophy, define a multisystem disorder named MDPL syndrome. MDPL has been associated with heterozygous mutations in POLD1 gene resulting in loss of DNA polymerase δ activity. In this study, we report clinical, genetic, and cellular studies of a 13-year-old Pakistani girl, presenting growth retardation, sensorineural deafness, altered distribution of subcutaneous adipose tissue, and insulin resistance. We performed Sanger sequencing of POLD1 gene in the proband and the healthy parents. Fibroblasts obtained from dermal biopsy were evaluated for the specific hallmarks of cellular senescence and for their response to the DNA-induced damage. Patient carried the recurrent heterozygous de novo in frame deletion (c.1812_1814delCTC, p.Ser605del ) within POLD1 gene, previously detected in 16 MDPL patients. In patient's fibroblasts we observed severe nuclear envelope anomalies, presence of micronuclei, accumulation of prelamin A, altered cell growth, and cellular senescence. In addition, we observed a persistence of DNA damage after cisplatin exposure, compared to control cells. In conclusion, the MDPL nuclear and cellular findings resemble features observed in other progeroid syndromes and familial lipodystrophies. Although further investigations will be necessary, these information could be used to establish targeted therapeutic approaches

    Pro-oncogenic action of LOX-1 and its splice variant LOX-1Δ4 in breast cancer phenotypes

    No full text
    The identification of new predictive biomarkers and therapeutic target for tailored therapy in breast cancer onset and progression is an interesting challenge. OLR-1 gene encodes the cell membrane receptor LOX-1 (lectin-like oxidized low-density lipoprotein receptor). We have recently identified a novel alternative OLR-1 isoform, LOX-1Δ4, whose expression and functions are still not clarified. In the present paper, we demonstrated that LOX-1 is overexpressed in 70% of human breast cancer (n = 47) and positively correlated to the tumor stage and grade (p < 0.01). Observations on LOX-1 and its splice variant Δ4 pointed out a different expression pattern correlated to breast cancer phenotypes. Overexpressing LOX-1 and LOX-1Δ4 in vitro, we obtained a strong enhancement of proliferative rate and a downregulation of cell death-related proteins. In addition, we observed a strong modulation of histone H4 acetylation and Ku70, the limiting factor of DNA double-strand breaks repair machinery implied in apoptosis inhibition and drug resistance acquisition. Moreover, LOX-1Δ4 overexpression is able to increase proliferation in a non-tumorigenic epithelial cell line, MCF12-F, acting as an oncogene. Altogether, these results suggest that LOX-1 may acts as a molecular link among metabolism, inflammation and cancer, indicating its potential role as biomarker and new molecular target, representing an attractive and concrete opportunity to improve current strategies for breast cancer tailored therapy

    Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response

    No full text
    High-throughput phenotyping is becoming increasingly available thanks to analytical and bioinformatics approaches that enable the use of very high-dimensional data and to the availability of dynamic models that link phenomena across levels: from genes to cells, from cells to organs, and through the whole organism. The combination of phenomics, deep learning, and machine learning represents a strong potential for the phenotypical investigation, leading the way to a more embracing approach, called machine learning phenomics (MLP). In particular, in this work we present a novel MLP platform for phenomics investigation of cancer-cells response to therapy, exploiting and combining the potential of time-lapse microscopy for cell behavior data acquisition and robust deep learning software architectures for the latent phenotypes extraction. A two-step proof of concepts is designed. First, we demonstrate a strict correlation among gene expression and cell phenotype with the aim to identify new biomarkers and targets for tailored therapy in human colorectal cancer onset and progression. Experiments were conducted on human colorectal adenocarcinoma cells (DLD-1) and their profile was compared with an isogenic line in which the expression of LOX-1 transcript was knocked down. In addition, we also evaluate the phenotypic impact of the administration of different doses of an antineoplastic drug over DLD-1 cells. Under the omics paradigm, proteomics results are used to confirm the findings of the experiments

    Functional analysis of POLD1 p.ser605del variant: the aging phenotype of MDPL syndrome is associated with an impaired DNA repair capacity

    No full text
    Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy define a rare systemic disorder, named MDPL Syndrome, due to almost always a de novo variant in POLD1 gene, encoding the DNA polymerase δ. We report a MDPL female heterozygote for the recurrent p.Ser605del variant. In order to deepen the functional role of the in frame deletion affecting the polymerase catalytic site of the protein, cellular phenotype has been characterised. MDPL fibroblasts exhibit in vitro nuclear envelope anomalies, accumulation of prelamin A and presence of micronuclei. A decline of cell growth, cellular senescence and a blockage of proliferation in G0/G1 phase complete the aged cellular picture. The evaluation of the genomic instability reveals a delayed recovery from DNA induced-damage. Moreover, the rate of telomere shortening was greater in pathological cells, suggesting the telomere dysfunction as an emerging key feature in MDPL. Our results suggest an alteration in DNA replication/repair function of POLD1 as a primary pathogenetic cause of MDPL. The understanding of the mechanisms linking these cellular characteristics to the accelerated aging and to the wide spectrum of affected tissues and clinical symptoms in the MDPL patients may provide opportunities to develop therapeutic treatments for progeroid syndromes

    The lectin-like oxidized LDL receptor-1: A new potential molecular target in colorectal cancer

    No full text
    The identification of new biomarkers and targets for tailored therapy in human colorectal cancer (CRC) onset and progression is an interesting challenge. CRC tissue produces an excess of ox-LDL, suggesting a close correlation between lipid dysfunction and malignant transformation. Lectin-like oxidized LDL receptor-1 (LOX-1) is involved in several mechanisms closely linked to tumorigenesis. Here we report a tumor specific LOX-1 overexpression in human colon cancers: LOX-1 results strongly increased in the 72% of carcinomas (P<0.001), and strongly overexpressed in 90% of highly aggressive and metastatic tumours (P<0.001), as compared to normal mucosa. Moreover LOX-1 results modulated since the early stage of the disease (adenomas vs normal mucosa; P<0.001) suggesting an involvement in tumor insurgence and progression. The in vitro knockdown of LOX-1 in DLD-1 and HCT-8 colon cancer cells by siRNA and anti-LOX-1 antibody triggers to an impaired proliferation rate and affects the maintenance of cell growth and tumorigenicity. The wound-healing assay reveals an evident impairment in closing the scratch. Lastly knockdown of LOX-1 delineates a specific pattern of volatile compounds characterized by the presence of a butyrate derivative, suggesting a potential role of LOX-1 in tumor-specific epigenetic regulation in neoplastic cells. The role of LOX-1 as a novel biomarker and molecular target represents a concrete opportunity to improve current therapeutic strategies for CRC. In addition, the innovative application of a technology focused to the identification of LOX-1 driven volatiles specific to colorectal cancer provides a promising diagnostic tool for CRC screening and for monitoring the response to therapy

    Functional analysis of POLD1 p.ser605del variant: the aging phenotype of MDPL syndrome is associated with an impaired Dna repair capacity

    No full text
    Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy define a rare systemic disorder, named MDPL Syndrome, due to almost always a de novo variant in POLD1 gene, encoding the DNA polymerase δ. We report a MDPL female heterozygote for the recurrent p.Ser605del variant. In order to deepen the functional role of the in frame deletion affecting the polymerase catalytic site of the protein, cellular phenotype has been characterised. MDPL fibroblasts exhibit in vitro nuclear envelope anomalies, accumulation of prelamin A and presence of micronuclei. A decline of cell growth, cellular senescence and a blockage of proliferation in G0/G1 phase complete the aged cellular picture. The evaluation of the genomic instability reveals a delayed recovery from DNA induced-damage. Moreover, the rate of telomere shortening was greater in pathological cells, suggesting the telomere dysfunction as an emerging key feature in MDPL. Our results suggest an alteration in DNA replication/repair function of POLD1 as a primary pathogenetic cause of MDPL. The understanding of the mechanisms linking these cellular characteristics to the accelerated aging and to the wide spectrum of affected tissues and clinical symptoms in the MDPL patients may provide opportunities to develop therapeutic treatments for progeroid syndromes

    Targeting LOX-1 inhibits colorectal cancer metastasis in an animal model

    No full text
    Recurrence and metastasis are the primary causes of mortality in patients with colorectal cancer (CRC), and therefore effective tools to reduce morbidity and mortality of CRC patients are necessary. LOX-1, the ox-LDL receptor, is strongly involved in inflammation, obesity, and atherosclerosis, and several studies have assessed its role in the carcinogenesis process linking ROS, metabolic disorders and cancer. We have already demonstrated in vitro that LOX-1 expression correlates to the aggressiveness of human colon cancer and its downregulation weakens the tumoral phenotype, indicating its potential function as a biomarker and a target in CRC therapy. Here we further investigate in vivo the role of LOX-1 in colon tumorigenesis by xenografting procedures, injecting nude mice both subcutaneously and intravenously with human high grade metastatic colorectal cancer cells, DLD-1, in which LOX-1 expression has been downregulated by shRNA (LOX-1RNAi cells). Histopathological and immunohistochemical evaluations have been performed on xenograft tumors. The experiments have been complemented by the analysis of the volatile compounds (VOCs) collected from the cages of injected mice and analyzed by gas-chromatography and gas sensors. After intravenous injection of LOX-1RNAi cells, we found that LOX-1 silencing influences both the engraftment of the tumor and the metastasis development, acting by angiogenesis. For the first time, we have observed that LOX-1 inhibition significantly prevents metastasis formation in injected mice and, at the same time, induces a downregulation of VEGF-A165, HIF-1α, and β-catenin whose expression is involved in cell migration and metastasis, and a variation of histone H4 acetylation pattern suggesting also a role of LOX-1 in regulating gene transcription. The analysis of the volatile compounds (VOCs) collected from the cages of injected mice has evidenced a specific profile in those xenograft mice in which metastasis originates. These findings underline the role of LOX-1 as a potential target for inhibition of tumor progression and metastasis, enhancing current therapeutic strategies against colorectal cancer. © 2019 Murdocca, Capuano, Pucci, Cicconi, Polidoro, Catini, Martinelli, Paolesse, Orlandi, Mango, Novelli, Di Natale and Sangiuolo
    corecore