46 research outputs found

    Predominant constitutive CFTR conductance in small airways

    Get PDF
    BACKGROUND: The pathological hallmarks of chronic obstructive pulmonary disease (COPD) are inflammation of the small airways (bronchiolitis) and destruction of lung parenchyma (emphysema). These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. METHODS: We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. RESULTS: In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath) of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25), but when gluconate replaced luminal Cl(-), the bionic Cl(- )diffusion potentials (-58 ± 3 mV; n = 25) were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl(- )permeability was at least 5 times greater than Na(+ )permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM)+IBMX (100 μM), ATP (100 μM), or adenosine (100 μM), but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM), GlyH-101* (5–50 μM), and CFTR(Inh)-172* (5 μM). RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. CONCLUSION: These results indicate that the small airway of the pig is characterized by a constitutively active Cl(- )conductance that is most likely due to CFTR

    Translating Molecular Physiology of Intestinal Transport Into Pharmacologic Treatment of Diarrhea: Stimulation of Na+ Absorption

    No full text
    Diarrheal diseases remain a leading cause of morbidity and mortality for children in developing countries while representing an important cause of morbidity worldwide. The WHO recommended low osmolarity oral rehydration solutions plus zinc save lives in patients with acute diarrhea(1), but there are no approved, safe drugs which have been shown to be effective against most causes of acute diarrhea. Identification of abnormalities in electrolyte handling by the intestine in diarrhea, including increased intestinal anion secretion and reduced Na(+) absorption, suggest a number of potential drug targets. This is based on the view that successful drug therapy for diarrhea will result from correcting the abnormalities in electrolyte transport that are pathophysiologic for diarrhea. We review the molecular mechanisms of physiologic regulation of intestinal ion transport and changes that occur in diarrhea and the status of drugs being developed to correct the transport abnormalities in Na(+) absorption which occur in diarrhea. Mechanisms of Cl(−) secretion and approaches to anti-Cl(−) secretory therapies of diarrhea are discussed in a companion review
    corecore