99 research outputs found

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    (+)-Rutamarin as a Dual Inducer of Both GLUT4 Translocation and Expression Efficiently Ameliorates Glucose Homeostasis in Insulin-Resistant Mice

    Get PDF
    Glucose transporter 4 (GLUT4) is a principal glucose transporter in response to insulin, and impaired translocation or decreased expression of GLUT4 is believed to be one of the major pathological features of type 2 diabetes mellitus (T2DM). Therefore, induction of GLUT4 translocation or/and expression is a promising strategy for anti-T2DM drug discovery. Here we report that the natural product (+)-Rutamarin (Rut) functions as an efficient dual inducer on both insulin-induced GLUT4 translocation and expression. Rut-treated 3T3-L1 adipocytes exhibit efficiently enhanced insulin-induced glucose uptake, while diet-induced obese (DIO) mice based assays further confirm the Rut-induced improvement of glucose homeostasis and insulin sensitivity in vivo. Subsequent investigation of Rut acting targets indicates that as a specific protein tyrosine phosphatase 1B (PTP1B) inhibitor Rut induces basal GLUT4 translocation to some extent and largely enhances insulin-induced GLUT4 translocation through PI3 kinase-AKT/PKB pathway, while as an agonist of retinoid X receptor α (RXRα), Rut potently increases GLUT4 expression. Furthermore, by using molecular modeling and crystallographic approaches, the possible binding modes of Rut to these two targets have been also determined at atomic levels. All our results have thus highlighted the potential of Rut as both a valuable lead compound for anti-T2DM drug discovery and a promising chemical probe for GLUT4 associated pathways exploration

    Regulation of mitochondrial morphogenesis by annexin a6.

    Get PDF
    Mitochondrial homeostasis is critical in meeting cellular energy demands, shaping calcium signals and determining susceptibility to apoptosis. Here we report a role for anxA6 in the regulation of mitochondrial morphogenesis, and show that in cells lacking anxA6 mitochondria are fragmented, respiration is impaired and mitochondrial membrane potential is reduced. In fibroblasts from AnxA6(-/-) mice, mitochondrial Ca(2+) uptake is reduced and cytosolic Ca(2+) transients are elevated. These observations led us to investigate possible interactions between anxA6 and proteins with roles in mitochondrial fusion and fission. We found that anxA6 associates with Drp1 and that mitochondrial fragmentation in AnxA6(-/-) fibroblasts was prevented by the Drp1 inhibitor mdivi-1. In normal cells elevation of intracellular Ca(2+) disrupted the interaction between anxA6 and Drp1, displacing anxA6 to the plasma membrane and promoting mitochondrial fission. Our results suggest that anxA6 inhibits Drp1 activity, and that Ca(2+)-binding to anxA6 relieves this inhibition to permit Drp1-mediated mitochondrial fission

    Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick

    Get PDF
    PHOSPHO1 is a bone specific phosphatase implicated in the initiation of inorganic phosphate generation for matrix mineralization. The control of mineralization is attributed to the actions of tissue-non specific alkaline phosphatase (TNAP). However, matrix vesicles (MVs) containing apatite crystals are present in patients with hypophosphatasia as well as TNAP null (Akp2(-/-)) mice. It is therefore likely that other phosphatases work with TNAP to regulate matrix mineralization. Although PHOSPHO1 and TNAP expression is associated with MVs, it is not known if PHOSPHO1 and TNAP are co-expressed during the early stages of limb development. Furthermore the functional in-vivo role of PHOSPHO1 in matrix mineralization has yet to be established. Here, we studied the temporal expression and functional role of PHOSPHO1 within chick limb bud mesenchymal micromass cultures and also in wild-type and talpid(3) chick mutants. These mutants are characterized by defective hedgehog signalling and the absence of endochondral mineralization. The ability of in-vitro micromass cultures to differentiate and mineralize their matrix was temporally associated with increased expression of PHOSPHO1 and TNAP. Comparable changes in expression were noted in developing embryonic legs (developmental stages 23–36HH). Micromass cultures treated with lansoprazole, a small-molecule inhibitor of PHOSPHO1 activity, or FGF2, an inhibitor of chondrocyte differentiation, resulted in reduced alizarin red staining (P<0.05). FGF2 treatment also caused a reduction in PHOSPHO1 (P<0.001) and TNAP (P<0.001) expression. Expression analysis by whole mount RNA in-situ hybridization, correlated with qPCR micromass data and demonstrated the existence of a tightly regulated pattern of Phospho1 and Tnap expression which precedes mineralization. Treatment of developing embryos for 5-days with lansoprazole completely inhibited mineralization of all leg and wing long bones as assessed by alcian blue/alizarin red staining. Furthermore, long bones of the talpid(3) chick mutant did not express Phospho1 or Tnap whereas flat bones mineralized normally and expressed both phosphatases. In conclusion, this study has disclosed that PHOSPHO1 expression mirrors that of TNAP during embryonic bone development and that PHOSPHO1 contributes to bone mineralization in developing chick long bones

    B009 L’activation des PPAR <alpha> ou des PPAR <beta>/<delta> réduit la réponse à l’insuline des cardiomyocytes

    Get PDF
    La résistance à l’insuline se définit comme son incapacité à augmenter le transport de glucose dans ses tissus-cibles. La possibilité d’augmenter le transport de glucose permet aux cardiomyocytes de supporter les situations de stress métabolique. Le stress métabolique stimule le transport de glucose par un mécanisme dont les étapes finales, la phosphorylation de l’AS160 et la translocation du transporteur GLUT4, sont communes avec l’effet de l’insulin.Les agonistes des PPARα, tels que les fibrates, sont utilisés pour traiter la dyslipidémie induisant la résistance à l’insuline ; les agonistes des PPARβ/δ ont un potentiel thérapeutique similaire. L’influence directe des agonistes des PPARα ou des PPARβ/δ sur le transport de glucose stimulé par l’insuline ou le stress métabolique n’est pas connue. Nous avons mesuré le transport de glucose dans des cardiomyocytes exposés 7 jours à des agonistes spécifiques des PPARα (Wy-14643 ; GW7647) ou des PPARβ/δ (L-165041 ; GW0742) ou à l’acide 9-cis rétinoïque (9cRA). Le 9cRA est un agoniste du RXR et donc active tous les complexes PPAR/RXR. Aucun agoniste n’influençait le transport basal de glucose. Le 9cRA augmentait le transport de glucose stimulé par l’insuline ou induit par le stress métabolique. Le Wy-14643 améliorait légèrement le transport de glucose stimulé par l’insuline, tandis que le GW7647 et les agonistes des PPARβ/δ réduisaient fortement le transport de glucose stimulé par l’insuline.Le transport de glucose induit par le stress métabolique n’était pas affecté par les agonistes des PPARα ou des PPARβ/δ, ce qui suggère que ces agonistes agissent sur des mécanismes spécifiquement stimulés par l’insuline. Les phosphorylations en réponse à l’insuline de son récepteur et de l’effecteur en aval Akt étaient légèrement réduites dans les cardiomyocytes exposés aux agonistes des PPARα ou des PPARβ/δ. La phosphorylation de l’AS160 en revanche restait normale.L’activation des PPARα ou des PPARβ/δ stimule l’oxydation des acides gras, ce qui pourrait expliquer la réduction du transport de glucose. Cependant le 9cRAstimule également l’oxydation des acides gras. Enfin, les gras, qui stimulent aussi leur propre oxydation, n’ont qu’un effet mineur sur le transport de glucose stimulé par l’insuline

    Angiotensin II favors progression to heart failure in diabetic hearts: role of myocardial fatty acid oxidation downregulation

    No full text
    Purpose: Diabetic myocardium is particularly vulnerable to develop heart failure in response to chronic stress conditions including hypertension or myocardial infarction. We have recently observed that angiotensin II (Ang II)-mediated downregulation of the fatty acid oxidation pathway favors occurrence of heart failure by myocardial accumulation of lipids (lipotoxicity). Because diabetic heart is exposed to high levels of circulating fatty acid, we determined whether insulin resistance favors development of heart failure in mice with Ang II-mediated myocardial remodeling.Methods: To study the combined effect of diabetes and Ang II-induced heart remodeling, we generated leptin-deficient/insulin resistant (Lepob/ob) mice with cardiac targeted overexpression of angiotensinogen (TGAOGN). Left ventricular (LV) failure was indicated by pulmonary congestion (lung weight/tibial length&gt;+2SD of wild-type mice). Myocardial metabolism and function were assessed during in vitro isolated working heart perfusion.Results: Forty-eight percent of TGAOGN mice without insulin resistance exhibited pulmonary congestion at the age of 6 months associated with increased myocardial BNP expression (+375% compared with WT) and reduced LV power (developed pressure x cardiac output; -15%). The proportion of mice presenting heart failure was markedly increased to 71% in TGAOGN mice with insulin resistance (TGAOGN/Lepob/ob). TGAOGN/Lepob/ob mice with heart failure exhibited further increase of BNP compared with failing non-diabetic TGAOGN mice (+146%) and further reduction of cardiac power (-59%). Mice with insulin resistance alone (Lepob/ob) did not exhibit signs of heart failure or LV dysfunction. Myocardial fatty acid oxidation measured during in vitro perfusion was markedly increased in non-failing hearts from Lepob/ob mice (+380% compared with WT) and glucose oxidation decreased (-72%). In contrast, fatty acid and glucose oxidation did not differ from Lepob/ob mice in hearts from TGAOGN/Lepob/ob mice without heart failure. However, both fatty acid and glucose oxidation were markedly decreased (-47% and -48%, respectively, compared with WT/Lepob/+) in failing hearts from TGAOGN/Lepob/ob mice. Reduction of fatty acid oxidation was associated with marked reduction of protein expression of a number of regulatory enzymes implied in fatty acid oxidation.Conclusions: Insulin resistance favors the progression to heart failure during chronic exposure of the myocardium to Ang II. Our results are compatible with a role of Ang II-mediated downregulation of fatty acid oxidation, potentially promoting lipotoxicity
    corecore