23 research outputs found

    Quantitative approach of Min protein researches and applications: Experiments, mathematical modeling and computer simulations

    Get PDF
    Cell division in prokaryotes is a process (known as binary fission) where the parent cell divides into daughter cells. In this process, the dynamics of Min proteins is an important factor in the accurate positioning at the midcell in Escherichia coli. This site specificity is regulated by the oscillatorybehavior of Min proteins. Numerous studies of Min protein dynamics have focused on dynamic spatialtemporal pattern formation, the movement mechanism and the biochemical basis function mostly using wet lab experiments, but the quantitative data remains limited. Thus in this research review, focus is on quantitative methodologies. Up-to-date information and findings regarding Min proteins, particularly MinD proteins obtained by using quantitative approaches such as experiments, modeling and simulations were provided. This review of quantitative techniques is expected to benefit not only those who want to conduct research in this area using more quantitative approaches, but also those who are interested in using qualitative data to support their findings

    Autocatalytic Loop, Amplification and Diffusion: A Mathematical and Computational Model of Cell Polarization in Neural Chemotaxis

    Get PDF
    The chemotactic response of cells to graded fields of chemical cues is a complex process that requires the coordination of several intracellular activities. Fundamental steps to obtain a front vs. back differentiation in the cell are the localized distribution of internal molecules and the amplification of the external signal. The goal of this work is to develop a mathematical and computational model for the quantitative study of such phenomena in the context of axon chemotactic pathfinding in neural development. In order to perform turning decisions, axons develop front-back polarization in their distal structure, the growth cone. Starting from the recent experimental findings of the biased redistribution of receptors on the growth cone membrane, driven by the interaction with the cytoskeleton, we propose a model to investigate the significance of this process. Our main contribution is to quantitatively demonstrate that the autocatalytic loop involving receptors, cytoplasmic species and cytoskeleton is adequate to give rise to the chemotactic behavior of neural cells. We assess the fact that spatial bias in receptors is a precursory key event for chemotactic response, establishing the necessity of a tight link between upstream gradient sensing and downstream cytoskeleton dynamics. We analyze further crosslinked effects and, among others, the contribution to polarization of internal enzymatic reactions, which entail the production of molecules with a one-to-more factor. The model shows that the enzymatic efficiency of such reactions must overcome a threshold in order to give rise to a sufficient amplification, another fundamental precursory step for obtaining polarization. Eventually, we address the characteristic behavior of the attraction/repulsion of axons subjected to the same cue, providing a quantitative indicator of the parameters which more critically determine this nontrivial chemotactic response

    Modelling Vesicular Release at Hippocampal Synapses

    Get PDF
    We study local calcium dynamics leading to a vesicle fusion in a stochastic, and spatially explicit, biophysical model of the CA3-CA1 presynaptic bouton. The kinetic model for vesicle release has two calcium sensors, a sensor for fast synchronous release that lasts a few tens of milliseconds and a separate sensor for slow asynchronous release that lasts a few hundred milliseconds. A wide range of data can be accounted for consistently only when a refractory period lasting a few milliseconds between releases is included. The inclusion of a second sensor for asynchronous release with a slow unbinding site, and thereby a long memory, affects short-term plasticity by facilitating release. Our simulations also reveal a third time scale of vesicle release that is correlated with the stimulus and is distinct from the fast and the slow releases. In these detailed Monte Carlo simulations all three time scales of vesicle release are insensitive to the spatial details of the synaptic ultrastructure. Furthermore, our simulations allow us to identify features of synaptic transmission that are universal and those that are modulated by structure

    Multiple traces of monkeypox detected in non-sewered wastewater with sparse sampling from a densely populated metropolitan area in Asia

    Get PDF
    The monkeypox virus is excreted in the feces of infected individuals. Therefore, there is an interest in using viral load detection in wastewater for sentinel early surveillance at a community level and as a complementary approach to syndromic surveillance. We collected wastewater from 63 sewered and non-sewered locations in Bangkok city center between May and August 2022. Monkeypox viral DNA copy numbers were quantified using real-time polymerase chain reaction (PCR) and confirmed positive by Sanger sequencing. Monkeypox viral DNA was first detected in wastewater from the second week of June 2022, with a mean copy number of 16.4 copies/ml (n = 3). From the first week of July, the number of viral DNA copies increased to a mean copy number of 45.92 copies/ml. Positive samples were Sanger sequenced and confirmed the presence of the monkeypox virus. Our study is the first to detect monkeypox viral DNA in wastewater from various locations within Thailand. Results suggest that this could be a complementary source for detecting viral DNA and predicting upcoming outbreaks

    Exploring indoor and outdoor dust as a potential tool for detection and monitoring of COVID-19 transmission

    Get PDF
    This study investigated the potential of using SARS-CoV-2 viral concentrations in dust as an additional surveillance tool for early detection and monitoring of COVID-19 transmission. Dust samples were collected from 8 public locations in 16 districts of Bangkok, Thailand, from June to August 2021. SARS-CoV-2 RNA concentrations in dust were quantified, and their correlation with community case incidence was assessed. Our findings revealed a positive correlation between viral concentrations detected in dust and the relative risk of COVID-19. The highest risk was observed with no delay (0-day lag), and this risk gradually decreased as the lag time increased. We observed an overall decline in viral concentrations in public places during lockdown, closely associated with reduced human mobility. The effective reproduction number for COVID-19 transmission remained above one throughout the study period, suggesting that transmission may persist in locations beyond public areas even after the lockdown measures were in place

    Modeling vaccination strategies with limited early COVID-19 vaccine access in low- and middle-income countries: A case study of Thailand

    No full text
    Low- and middle-income countries faced significant challenges in accessing COVID-19 vaccines during the early stages of the pandemic. In this study, we utilized an age-structured modeling approach to examine the implications of various vaccination strategies, vaccine prioritization, and vaccine rollout speeds in Thailand, an upper-middle-income country experiencing vaccine shortages during the early stages of the pandemic. The model directly compares the effectiveness of several vaccination strategies, including the heterologous vaccination where CoronaVac (CV) vaccine was administered as the first dose, followed by ChAdOx1 nCoV-19 (AZ) vaccine as the second dose, under varying disease transmission dynamics. We found that the traditional AZ homologous vaccination was more effective than the CV homologous vaccination, regardless of disease transmission dynamics. However, combining CV and AZ vaccines via either parallel homologous or heterologous vaccinations was more effective than relying solely on AZ homologous vaccination. Additionally, prioritizing vaccination for the elderly aged 60 years and above was the most effective way to reduce mortality when community transmission is well-controlled. On the other hand, prioritizing workers aged 20–59 was most effective in lowering COVID-19 cases, irrespective of the transmission dynamics. Lastly, despite the vaccine prioritization strategy, rapid vaccine rollout speeds were crucial in reducing COVID-19 infections and deaths. These findings suggested that in low- and middle-income countries where early access to high-efficacy vaccines might be limited, obtaining any accessible vaccines as early as possible and using them in parallel with other higher-efficacy vaccines might be a better strategy than waiting for and relying solely on higher-efficacy vaccines

    Fitness loss under amino acid starvation in artemisinin-resistant Plasmodium falciparum isolates from Cambodia

    No full text
    Artemisinin is the most rapidly effective drug for Plasmodium falciparum malaria treatment currently in clinical use. Emerging artemisinin-resistant parasites pose a great global health risk. At present, the level of artemisinin resistance is still relatively low with evidence pointing towards a trade-off between artemisinin resistance and fitness loss. Here we show that artemisinin-resistant P. falciparum isolates from Cambodia manifested fitness loss, showing fewer progenies during the intra-erythrocytic developmental cycle. The loss in fitness was exacerbated under the condition of low exogenous amino acid supply. The resistant parasites failed to undergo maturation, whereas their drug-sensitive counterparts were able to complete the erythrocytic cycle under conditions of amino acid deprivation. The artemisinin-resistant phenotype was not stable, and loss of the phenotype was associated with changes in the expression of a putative target, Exp1, a membrane glutathione transferase. Analysis of SNPs in haemoglobin processing genes revealed associations with parasite clearance times, suggesting changes in haemoglobin catabolism may contribute to artemisinin resistance. These findings on fitness and protein homeostasis could provide clues on how to contain emerging artemisinin-resistant parasites

    Fitness loss under amino acid starvation in artemisinin-resistant Plasmodium falciparum isolates from Cambodia

    Get PDF
    Artemisinin is the most rapidly effective drug for Plasmodium falciparum malaria treatment currently in clinical use. Emerging artemisinin-resistant parasites pose a great global health risk. At present, the level of artemisinin resistance is still relatively low with evidence pointing towards a trade-off between artemisinin resistance and fitness loss. Here we show that artemisinin-resistant P. falciparum isolates from Cambodia manifested fitness loss, showing fewer progenies during the intra-erythrocytic developmental cycle. The loss in fitness was exacerbated under the condition of low exogenous amino acid supply. The resistant parasites failed to undergo maturation, whereas their drug-sensitive counterparts were able to complete the erythrocytic cycle under conditions of amino acid deprivation. The artemisinin-resistant phenotype was not stable, and loss of the phenotype was associated with changes in the expression of a putative target, Exp1, a membrane glutathione transferase. Analysis of SNPs in haemoglobin processing genes revealed associations with parasite clearance times, suggesting changes in haemoglobin catabolism may contribute to artemisinin resistance. These findings on fitness and protein homeostasis could provide clues on how to contain emerging artemisinin-resistant parasites
    corecore