8,213 research outputs found
Time in Quantum Gravity
The Wheeler-DeWitt equation in quantum gravity is timeless in character. In
order to discuss quantum to classical transition of the universe, one uses a
time prescription in quantum gravity to obtain a time contained description
starting from Wheeler-DeWitt equation and WKB ansatz for the WD wavefunction.
The approach has some drawbacks. In this work, we obtain the time-contained
Schroedinger-Wheeler-DeWitt equation without using the WD equation and the WKB
ansatz for the wavefunction. We further show that a Gaussian ansatz for SWD
wavefunction is consistent with the Hartle-Hawking or wormhole dominance
proposal boundary condition. We thus find an answer to the small scale boundary
conditions.Comment: 12 Pages, LaTeX, no figur
Constraining wrong-sign couplings with
The rare decay has a very small rate in the
Standard Model, due to a strong cancellation between the direct and indirect
diagrams. Models with a changed coupling can thus lead to a great
increase in this decay. Current limits on two Higgs doublet models still allow
for the possibility that the coupling might have a sign opposite to the
Standard Model; the so-called "wrong-sign". We show how can be used to put limits on the wrong-sign solutions.Comment: 7 pages, 3 figure
EVALUATION OF THE ANTIOXIDANT ACTIVITY OF THE FLAVONOIDS ISOLATED FROM HELIOTROPIUM SINUATUM RESIN USING ORACFL, DPPH AND ESR METHODOLOGIES
Indexación: Web of Science; Scielo.The antioxidant capacity has been determined for a number of flavonoid compounds from Heliotropium sinuatum, a plant that grows in arid areas in the north of Chile. The methodologies used were: ORAC(FL) (oxygen radical absorbance capacity - fluorescein), DPPH (2,2-diphenyl-2-picrylhydrazyl) bleaching and electron spin resonance (ESR). These compounds were studied in homogeneous and heterogeneous media. The results showed that the 7-o-methyleriodictiol and 3-o-methylisorhamnetin are those with the highest antioxidant capacity.http://ref.scielo.org/m82cz
Spherical collapse of a heat conducting fluid in higher dimensions without horizon
We consider a scenario where the interior spacetime,described by a heat
conducting fluid sphere is matched to a Vaidya metric in higher
dimensions.Interestingly we get a class of solutions, where following heat
radiation the boundary surface collapses without the appearance of an event
horizon at any stage and this happens with reasonable properties of matter
field.The non-occurrence of a horizon is due to the fact that the rate of mass
loss exactly counterbalanced by the fall of boundary radius.Evidently this
poses a counter example to the so-called cosmic censorship hypothesis.Two
explicit examples of this class of solutions are also given and it is observed
that the rate of collapse is delayed with the introduction of extra
dimensions.The work extends to higher dimensions our previous investigation in
4D.Comment: 6 page
Coupling parameters and the form of the potential via Noether symmetry
We explore the conditions for the existence of Noether symmetries in the
dynamics of FRW metric, non minimally coupled with a scalar field, in the most
general situation, and with nonzero spatial curvature. When such symmetries are
present we find general exact solution for the Einstein equations. We also show
that non Noether symmetries can be found.
Finally,we present an extension of the procedure to the Kantowski- Sachs
metric which is particularly interesting in the case of degenerate Lagrangian.Comment: 13 pages, no figure
Quantum Gravity Equation In Schroedinger Form In Minisuperspace Description
We start from classical Hamiltonian constraint of general relativity to
obtain the Einstein-Hamiltonian-Jacobi equation. We obtain a time parameter
prescription demanding that geometry itself determines the time, not the matter
field, such that the time so defined being equivalent to the time that enters
into the Schroedinger equation. Without any reference to the Wheeler-DeWitt
equation and without invoking the expansion of exponent in WKB wavefunction in
powers of Planck mass, we obtain an equation for quantum gravity in
Schroedinger form containing time. We restrict ourselves to a minisuperspace
description. Unlike matter field equation our equation is equivalent to the
Wheeler-DeWitt equation in the sense that our solutions reproduce also the
wavefunction of the Wheeler-DeWitt equation provided one evaluates the
normalization constant according to the wormhole dominance proposal recently
proposed by us.Comment: 11 Pages, ReVTeX, no figur
Quantum cosmology with a curvature squared action
The correct quantum description for a curvature squared term in the action
can be obtained by casting the action in the canonical form with the
introduction of a variable which is the negative of the first derivative of the
field variable appearing in the action, only after removing the total
derivative terms from the action. We present the Wheeler-DeWitt equation and
obtain the expression for the probability density and current density from the
equation of continuity. Furthermore, in the weak energy limit we obtain the
classical Einstein equation. Finally we present a solution of the wave
equation.Comment: 8 pages, revte
Spinning Loop Black Holes
In this paper we construct four Kerr-like spacetimes starting from the loop
black hole Schwarzschild solutions (LBH) and applying the Newman-Janis
transformation. In previous papers the Schwarzschild LBH was obtained replacing
the Ashtekar connection with holonomies on a particular graph in a
minisuperspace approximation which describes the black hole interior. Starting
from this solution, we use a Newman-Janis transformation and we specialize to
two different and natural complexifications inspired from the complexifications
of the Schwarzschild and Reissner-Nordstrom metrics. We show explicitly that
the space-times obtained in this way are singularity free and thus there are no
naked singularities. We show that the transformation move, if any, the
causality violating regions of the Kerr metric far from r=0. We study the
space-time structure with particular attention to the horizons shape. We
conclude the paper with a discussion on a regular Reissner-Nordstrom black hole
derived from the Schwarzschild LBH and then applying again the Newmann-Janis
transformation.Comment: 18 pages, 18 figure
Hamilton-Jacobi Tunneling Method for Dynamical Horizons in Different Coordinate Gauges
Previous work on dynamical black hole instability is further elucidated
within the Hamilton-Jacobi method for horizon tunneling and the reconstruction
of the classical action by means of the null-expansion method. Everything is
based on two natural requirements, namely that the tunneling rate is an
observable and therefore it must be based on invariantly defined quantities,
and that coordinate systems which do not cover the horizon should not be
admitted. These simple observations can help to clarify some ambiguities, like
the doubling of the temperature occurring in the static case when using
singular coordinates, and the role, if any, of the temporal contribution of the
action to the emission rate. The formalism is also applied to FRW cosmological
models, where it is observed that it predicts the positivity of the temperature
naturally, without further assumptions on the sign of the energy.Comment: Standard Latex document, typos corrected, refined discussion of
tunneling picture, subsection 5.1 remove
- …
