1,781 research outputs found

    Electrical Conductance of Molecular Wires

    Full text link
    Molecular wires (MW) are the fundamental building blocks for molecular electronic devices. They consist of a molecular unit connected to two continuum reservoirs of electrons (usually metallic leads). We rely on Landauer theory as the basis for studying the conductance properties of MW systems. This relates the lead to lead current to the transmission probability for an electron to scatter through the molecule. Two different methods have been developed for the study of this scattering. One is based on a solution of the Lippmann-Schwinger equation and the other solves for the {\bf t} matrix using Schroedinger's equation. We use our methodology to study two problems of current interest. The first MW system consists of 1,4 benzene-dithiolate (BDT) bonded to two gold nanocontacts. Our calculations show that the conductance is sensitive to the chemical bonding between the molecule and the leads. The second system we study highlights the interesting phenomenon of antiresonances in MW. We derive an analytic formula predicting at what energies antiresonances should occur in the transmission spectra of MW. A numerical calculation for a MW consisting of filter molecules attached to an active molecule shows the existence of an antiresonance at the energy predicted by our formula.Comment: 14 pages, 5 figure

    Attachment of Motile Bacterial Cells to Prealigned Holed Microarrays

    Get PDF
    Construction of biomotors is an exciting area of scientific research that holds great promise for the development of new technologies with broad potential applications in areas such as the energy industry and medicine. Herein, we demonstrate the fabrication of prealigned microarrays of motile Escherichia coli bacterial cells on SiOx substrates. To prepare these arrays, holed surfaces with a gold layer on the bottom of the holes were utilized. The attachment of bacteria to the holes was achieved via nonspecific interactions using poly-l-lysine hydrobromide (PLL). Our data suggest that a single motile bacterial cell can be selectively attached to an individual hole on a surface and bacterial cell binding can be controlled by altering the pH, with the greatest occupancy occurring at pH 7.8. Cells attached to hole arrays remained motile for at least 4 h. These data indicate that holed surface structures provide a promising footprint for the attachment of motile bacterial cells to form high-density site-specific functional bacterial microarrays

    Synthesis and Isolation of {110}-Faceted Gold Bipyramids and Rhombic Dodecahedra

    Get PDF
    Two {110}-faceted gold nanostructures—rhombic dodecahedra and obtuse triangular bipyramids—have been synthesized via a Ag-assisted, seed-mediated growth method. The combination of a Cl−-containing surfactant with a low concentration of Ag+ plays a role in the stabilization of the {110} facets. To the best of our knowledge, this is the first reported synthesis of a {110}-faceted bipyramid structure

    Synthesis and Isolation of {110}-Faceted Gold Bipyramids and Rhombic Dodecahedra

    Get PDF
    Two {110}-faceted gold nanostructures—rhombic dodecahedra and obtuse triangular bipyramids—have been synthesized via a Ag-assisted, seed-mediated growth method. The combination of a Cl−-containing surfactant with a low concentration of Ag+ plays a role in the stabilization of the {110} facets. To the best of our knowledge, this is the first reported synthesis of a {110}-faceted bipyramid structure

    Theory of Melting and the Optical Properties of Gold/DNA Nanocomposites

    Full text link
    We describe a simple model for the melting and optical properties of a DNA/gold nanoparticle aggregate. The optical properties at fixed wavelength change dramatically at the melting transition, which is found to be higher and narrower in temperature for larger particles, and much sharper than that of an isolated DNA link. All these features are in agreement with available experiments. The aggregate is modeled as a cluster of gold nanoparticles on a periodic lattice connected by DNA bonds, and the extinction coefficient is computed using the discrete dipole approximation. Melting takes place as an increasing number of these bonds break with increasing temperature. The melting temperature corresponds approximately to the bond percolation threshold.Comment: 5 pages, 4 figure. To be published in Phys. Rev.

    Towards a Tetravalent Chemistry of Colloids

    Full text link
    We propose coating spherical particles or droplets with anisotropic nano-sized objects to allow micron-scale colloids to link or functionalize with a four-fold valence, similar to the sp3 hybridized chemical bonds associated with, e.g., carbon, silicon and germanium. Candidates for such coatings include triblock copolymers, gemini lipids, metallic or semiconducting nanorods and conventional liquid crystal compounds. We estimate the size of the relevant nematic Frank constants, discuss how to obtain other valences and analyze the thermal distortions of ground state configurations of defects on the sphere.Comment: Replaced to improve figures. 4 figures Nano Letter

    Large-scale expansions of Friedreich's ataxia GAA•TTC repeats in an experimental human system: role of DNA replication and prevention by LNA-DNA oligonucleotides and PNA oligomers

    Full text link
    Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart

    Field-effect transistors assembled from functionalized carbon nanotubes

    Full text link
    We have fabricated field effect transistors from carbon nanotubes using a novel selective placement scheme. We use carbon nanotubes that are covalently bound to molecules containing hydroxamic acid functionality. The functionalized nanotubes bind strongly to basic metal oxide surfaces, but not to silicon dioxide. Upon annealing, the functionalization is removed, restoring the electronic properties of the nanotubes. The devices we have fabricated show excellent electrical characteristics.Comment: 5 pages, 6 figure
    • …
    corecore