38 research outputs found
Surjective separating maps on noncommutative -spaces
Let and let be a bounded map between noncommutative -spaces. If is bijective and separating (i.e., for any such that , we have ), we prove the existence of decompositions , and maps , , such that , has a direct Yeadon type factorisation and has an anti-direct Yeadon type factorisation. We further show that is separating in this case. Next we prove that for any (resp. any ), a surjective separating map is -bounded (resp. completely bounded) if and only if there exists a decomposition such that has a direct Yeadon type factorisation and is subhomogeneous
Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations
In this paper we study the following non-autonomous stochastic evolution
equation on a UMD Banach space with type 2,
{equation}\label{eq:SEab}\tag{SE} {{aligned} dU(t) & = (A(t)U(t) + F(t,U(t)))
dt + B(t,U(t)) dW_H(t), \quad t\in [0,T],
U(0) & = u_0. {aligned}. {equation}
Here are unbounded operators with domains
which may be time dependent. We assume that
satisfies the conditions of Acquistapace and Terreni. The
functions and are nonlinear functions defined on certain interpolation
spaces and is the initial value. is a cylindrical Brownian
motion on a separable Hilbert space .
Under Lipschitz and linear growth conditions we show that there exists a
unique mild solution of \eqref{eq:SEab}. Under assumptions on the interpolation
spaces we extend the factorization method of Da Prato, Kwapie\'n, and Zabczyk,
to obtain space-time regularity results for the solution of
\eqref{eq:SEab}. For Hilbert spaces we obtain a maximal regularity result.
The results improve several previous results from the literature.
The theory is applied to a second order stochastic partial differential
equation which has been studied by Sanz-Sol\'e and Vuillermot. This leads to
several improvements of their result.Comment: Accepted for publication in Journal of Evolution Equation
Maximal regularity for non-autonomous equations with measurable dependence on time
In this paper we study maximal -regularity for evolution equations with
time-dependent operators . We merely assume a measurable dependence on time.
In the first part of the paper we present a new sufficient condition for the
-boundedness of a class of vector-valued singular integrals which does not
rely on H\"ormander conditions in the time variable. This is then used to
develop an abstract operator-theoretic approach to maximal regularity.
The results are applied to the case of -th order elliptic operators
with time and space-dependent coefficients. Here the highest order coefficients
are assumed to be measurable in time and continuous in the space variables.
This results in an -theory for such equations for .
In the final section we extend a well-posedness result for quasilinear
equations to the time-dependent setting. Here we give an example of a nonlinear
parabolic PDE to which the result can be applied.Comment: Application to a quasilinear equation added. Accepted for publication
in Potential Analysi
Unbounded violation of tripartite Bell inequalities
We prove that there are tripartite quantum states (constructed from random
unitaries) that can lead to arbitrarily large violations of Bell inequalities
for dichotomic observables. As a consequence these states can withstand an
arbitrary amount of white noise before they admit a description within a local
hidden variable model. This is in sharp contrast with the bipartite case, where
all violations are bounded by Grothendieck's constant. We will discuss the
possibility of determining the Hilbert space dimension from the obtained
violation and comment on implications for communication complexity theory.
Moreover, we show that the violation obtained from generalized GHZ states is
always bounded so that, in contrast to many other contexts, GHZ states do in
this case not lead to extremal quantum correlations. The results are based on
tools from the theories of operator spaces and tensor norms which we exploit to
prove the existence of bounded but not completely bounded trilinear forms from
commutative C*-algebras.Comment: Substantial changes in the presentation to make the paper more
accessible for a non-specialized reade
New counterexamples on Ritt operators, sectorial operators and -boundedness
DOI:
10.1017/S000497271900043