654 research outputs found
Resonances in Ferromagnetic Gratings Detected by Microwave Photoconductivity
We investigate the impact of microwave excited spin excitations on the DC
charge transport in a ferromagnetic (FM) grating. We observe both resonant and
nonresonant microwave photoresistance. Resonant features are identified as the
ferromagnetic resonance (FMR) and ferromagnetic antiresonance (FMAR). A
macroscopic model based on Maxwell and Landau-Lifschitz equations reveals the
macroscopic nature of the FMAR. The experimental approach and results provide
new insight in the interplay between photonic, spintronic, and charge effects
in FM microstructures.Comment: 4 pages, 4 figure
Quantized spin excitations in a ferromagnetic microstrip from microwave photovoltage measurements
Quantized spin excitations in a single ferromagnetic microstrip have been
measured using the microwave photovoltage technique. Several kinds of spin wave
modes due to different contributions of the dipole-dipole and the exchange
interactions are observed. Among them are a series of distinct dipole-exchange
spin wave modes, which allow us to determine precisely the subtle spin boundary
condition. A comprehensive picture for quantized spin excitations in a
ferromagnet with finite size is thereby established. The dispersions of the
quantized spin wave modes have two different branches separated by the
saturation magnetization.Comment: 4 pages, 3 figure
Microwave photovoltage and photoresistance effects in ferromagnetic microstrips
We investigate the dc electric response induced by ferromagnetic resonance in
ferromagnetic Permalloy (Ni80Fe20) microstrips. The resulting magnetization
precession alters the angle of the magnetization with respect to both dc and rf
current. Consequently the time averaged anisotropic magnetoresistance (AMR)
changes (photoresistance). At the same time the time-dependent AMR oscillation
rectifies a part of the rf current and induces a dc voltage (photovoltage). A
phenomenological approach to magnetoresistance is used to describe the distinct
characteristics of the photoresistance and photovoltage with a consistent
formalism, which is found in excellent agreement with experiments performed on
in-plane magnetized ferromagnetic microstrips. Application of the microwave
photovoltage effect for rf magnetic field sensing is discussed.Comment: 16 pages, 15 figure
The Jefferson Lab Frozen Spin Target
A frozen spin polarized target, constructed at Jefferson Lab for use inside a
large acceptance spectrometer, is described. The target has been utilized for
photoproduction measurements with polarized tagged photons of both longitudinal
and circular polarization. Protons in TEMPO-doped butanol were dynamically
polarized to approximately 90% outside the spectrometer at 5 T and 200--300 mK.
Photoproduction data were acquired with the target inside the spectrometer at a
frozen-spin temperature of approximately 30 mK with the polarization maintained
by a thin, superconducting coil installed inside the target cryostat. A 0.56 T
solenoid was used for longitudinal target polarization and a 0.50 T dipole for
transverse polarization. Spin-lattice relaxation times as high as 4000 hours
were observed. We also report polarization results for deuterated propanediol
doped with the trityl radical OX063.Comment: 11 pages, 12 figures, preprint submitted to Nuclear Instruments and
Methods in Physics Research, Section
HOAPS precipitation validation with ship-borne rain gauge measurements over the Baltic Sea
Global ocean precipitation is an important part of the water cycle in the climate system. A number of efforts have been undertaken to acquire reliable estimates of precipitation over the oceans based on remote sensing and reanalysis modelling. However, validation of these data is still a challenging task, mainly due to a lack of suitable in situ measurements of precipitation over the oceans. In this study, validation of the satellite-based Hamburg Ocean Atmosphere Parameters and fluxes from Satellite data (HOAPS) climatology was conducted with in situ measurements by ship rain gauges over the Baltic Sea from 1995 to 1997. The ship rain gauge data are point-to-area collocated against the HOAPS data. By choosing suitable collocation parameters, a detection rate of up to about 70% is achieved. Investigation of the influence of the synoptic situation on the detectability shows that HOAPS performs better for stratiform than for convective precipitation. The number of collocated data is not sufficient to validate precipitation rates. Thus, precipitation rates were analysed by applying an interpolation scheme based on the Kriging method to both data sets. It was found that HOAPS underestimates precipitation by about 10%, taking into account that precipitation rates below 0.3 mm h−1 cannot be detected from satellite information
Unabated bottom water warming and freshening in the south Pacific Ocean.
Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 1778-1794, doi:10.1029/2018JC014775.Abyssal ocean warming contributed substantially to anthropogenic ocean heat uptake and global sea level rise between 1990 and 2010. In the 2010s, several hydrographic sections crossing the South Pacific Ocean were occupied for a third or fourth time since the 1990s, allowing for an assessment of the decadal variability in the local abyssal ocean properties among the 1990s, 2000s, and 2010s. These observations from three decades reveal steady to accelerated bottom water warming since the 1990s. Strong abyssal (z > 4,000 m) warming of 3.5 (±1.4) m°C/year (m°C = 10−3 °C) is observed in the Ross Sea, directly downstream from bottom water formation sites, with warming rates of 2.5 (±0.4) m°C/year to the east in the Amundsen‐Bellingshausen Basin and 1.3 (±0.2) m°C/year to the north in the Southwest Pacific Basin, all associated with a bottom‐intensified descent of the deepest isotherms. Warming is consistently found across all sections and their occupations within each basin, demonstrating that the abyssal warming is monotonic, basin‐wide, and multidecadal. In addition, bottom water freshening was strongest in the Ross Sea, with smaller amplitude in the Amundsen‐Bellingshausen Basin in the 2000s, but is discernible in portions of the Southwest Pacific Basin by the 2010s. These results indicate that bottom water freshening, stemming from strong freshening of Ross Shelf Waters, is being advected along deep isopycnals and mixed into deep basins, albeit on longer timescales than the dynamically driven, wave‐propagated warming signal. We quantify the contribution of the warming to local sea level and heat budgets.S. G. P. was supported by a U.S. GO‐SHIP postdoctoral fellowship through NSF grant OCE‐1437015, which also supported L. D. T. and S. M. and collection of U.S. GO‐SHIP data since 2014 on P06, S4P, P16, and P18. G. C. J. is supported by the Global Ocean Monitoring and Observation Program, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce and NOAA Research. B. M. S and S. E. W. were supported by the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. We are grateful for the hard work of the science parties, officers, and crew of all the research cruises on which these CTD data were collected. We also thank the two anonymous reviewers for their helpful comments that improve the manuscript. This is PMEL contribution 4870. All CTD data sets used in this analysis are publicly available at the website (https://cchdo.ucsd.edu).2019-08-2
The effect of stochastic perturbations on plankton transport by internal solitary waves
Internal solitary and solitary-like waves are a commonly observed feature of density stratified natural waters, including lakes and the coastal ocean. Since such waves induce significant currents throughout the water column they can be responsible for significant transport of both passive and swimming biota. We consider simple models of moving zooplankton based on the Langevin equation. The small amplitude randomness significantly alters the nature of particle motion. In particular, passage through the wave leads to strongly non Gaussian particle distributions. When the plankton swims to return to its equilibrium photic level, a steady state that balances randomness, swimming and wave-induced motions is possible. We discuss possible implications of this steady state for organisms that feed on plankton
Stable AMOC off state in an eddy-permitting coupled climate model
Shifts between on and off states of the Atlantic Meridional Overturning Circulation (AMOC) have been associated with past abrupt climate change, supported by the bistability of the AMOC found in many older, coarser resolution, ocean and climate models. However, as coupled climate models evolved in complexity a stable AMOC off state no longer seemed supported. Here we show that a current-generation, eddy-permitting climate model has an AMOC off state that remains stable for the 450-year duration of the model integration. Ocean eddies modify the overall freshwater balance, allowing for stronger northward salt transport by the AMOC compared with previous, non eddy-permitting models. As a result, the salinification of the subtropical North Atlantic, due to a southward shift of the intertropical rain belt, is counteracted by the reduced salt transport of the collapsed AMOC. The reduced salinification of the subtropical North Atlantic allows for an anomalous northward freshwater transport into the subpolar North Atlantic dominated by the gyre component. Combining the anomalous northward freshwater transport with the freshening due to reduced evaporation in this region helps stabilise the AMOC off state
Shifts in national land use and food production in Great Britain after a climate tipping point
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability: The modelled output data that support the findings of this study are openly available from: Smith, G. S. & Ritchie, P. D. L. (NERC Environmental Information Data Centre:
639 doi.org/10.5285/e1c1dbcf-2f37-429b-af19-a730f98600f6, 2019).Climate change is expected to impact agricultural land use. Steadily accumulating
changes in temperature and water availability can alter the relative profitability of
different farming activities and promote land use changes. There is also potential for
high-impact ‘climate tipping points’ where abrupt, non-linear change in climate occurs
- such as the potential collapse of the Atlantic Meridional Overturning Circulation
(AMOC). Here, using data from Great Britain, we develop a methodology to analyse the
impacts of a climate tipping point on land use and economic outcomes for agriculture.
We show that economic/land use impacts of such a tipping point are likely to include
widespread cessation of arable farming with losses of agricultural output, an order of
magnitude larger than the impacts of climate change without an AMOC collapse. The
agricultural effects of AMOC collapse could be ameliorated by technological
adaptations such as widespread irrigation, but the amount of water required and the
costs appear prohibitive in this instance.Natural Environment Research Council (NERC)Alan Turing Institut
- …