7 research outputs found

    Gender Differences in HIV Disease Progression and Treatment Outcomes among HIV Patients One Year after Starting Antiretroviral Treatment (ART) in Dar es Salaam, Tanzania.

    Get PDF
    We investigated gender differences in treatment outcome during first line antiretroviral treatment (ART) in a hospital setting in Tanzania, assessing clinical, social demographic, virological and immunological factors. We conducted a cohort study involving HIV infected patients scheduled to start ART and followed up to 1 year on ART. Structured questionnaires and patients file review were used to collect information and blood was collected for CD4 and viral load testing. Gender differences were assessed using Kruskal-Wallis test and chi-square test for continuous and categorical data respectively. Survival distributions for male and female patients were estimated using the Kaplan-Meier method and compared using Cox proportional hazards models. Of 234 patients recruited in this study, 70% were females. At baseline, women had significantly lower education level; lower monthly income, lower knowledge on ARV, less advanced HIV disease (33% women; 47% men started ART at WHO stage IV, p = 0.04), higher CD4 cell count (median 149 for women, 102 for men, p = 0.02) and higher BMI (p = 0.002). After 1 year of standard ART, a higher proportion of females survived although this was not significant, a significantly higher proportion of females had undetectable plasma viral load (69% women, 45% men, p = 0.003), however females ended at a comparable CD4 cell count (median CD4, 312 women; 321 men) signifying a worse CD4 cell increase (p = 0.05), even though they still had a higher BMI (p = 0.02). The unadjusted relative hazard for death for men compared to women was 1.94. After correcting for confounding factors, the Cox proportional hazards showed no significant difference in the survival rate (relative hazard 1.02). We observed women were starting treatment at a less advanced disease stage, but they had a lower socioeconomical status. After one year, both men and women had similar clinical and immunological conditions. It is not clear why women lose their immunological advantage over men despite a better virological treatment response. We recommend continuous follow up of this and more cohorts of patients to better understand the underlying causes for these differences and whether this will translate also in longer term differences

    Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis

    No full text
    Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI

    Update on the biochemistry of chlorophyll breakdown

    Full text link
    In land plants, chlorophyll is broken down to colorless linear tetrapyrroles in a highly conserved multi-step pathway. The pathway is termed the 'PAO pathway', because the opening of the chlorine macrocycle present in chlorophyll catalyzed by pheophorbide a oxygenase (PAO), the key enzyme of the pathway, provides the characteristic structural basis found in all further downstream chlorophyll breakdown products. To date, most of the biochemical steps of the PAO pathway have been elucidated and genes encoding many of the chlorophyll catabolic enzymes been identified. This review summarizes the current knowledge on the biochemistry of the PAO pathway and provides insight into recent progress made in the field that indicates that the pathway is more complex than thought in the past
    corecore