455 research outputs found
Border and Becoming as Sites of Theory
This paper travels backwards, imagining impossibly a particular time and place in the past, to consider how the TexasâMexico border helps make sense of our own becomings as teachers, scholars, and persons. Drawing on St. Pierreâs notion of the past as a site of theory, we ruminate on the Rio Grande Valley as âthe literal ground of our consciousnessâ. To do this qualitative work, we turn to others who have made sense of the border fictionally, as non-scholarly forms present different possibilities for research. We explore, nostalgically, the persons we might become in a Valley long pastâan openness now restrictedâand ways of (re)imagining becoming, of refusing narratives that foreclose hopeâwork crucially exigent for the precarious lives of those on the border today and the stories we tell about them
Follow-Up Observations of PTFO 8-8695: A 3 MYr Old T-Tauri Star Hosting a Jupiter-mass Planetary Candidate
We present Spitzer 4.5\micron\ light curve observations, Keck NIRSPEC radial
velocity observations, and LCOGT optical light curve observations of
PTFO~8-8695, which may host a Jupiter-sized planet in a very short orbital
period (0.45 days). Previous work by \citet{vaneyken12} and \citet{barnes13}
predicts that the stellar rotation axis and the planetary orbital plane should
precess with a period of days. As a consequence, the observed
transits should change shape and depth, disappear, and reappear with the
precession. Our observations indicate the long-term presence of the transit
events ( years), and that the transits indeed do change depth, disappear
and reappear. The Spitzer observations and the NIRSPEC radial velocity
observations (with contemporaneous LCOGT optical light curve data) are
consistent with the predicted transit times and depths for the $M_\star = 0.34\
M_\odot$ precession model and demonstrate the disappearance of the transits. An
LCOGT optical light curve shows that the transits do reappear approximately 1
year later. The observed transits occur at the times predicted by a
straight-forward propagation of the transit ephemeris. The precession model
correctly predicts the depth and time of the Spitzer transit and the lack of a
transit at the time of the NIRSPEC radial velocity observations. However, the
precession model predicts the return of the transits approximately 1 month
later than observed by LCOGT. Overall, the data are suggestive that the
planetary interpretation of the observed transit events may indeed be correct,
but the precession model and data are currently insufficient to confirm firmly
the planetary status of PTFO~8-8695b.Comment: Accepted for publication in The Astrophysical Journa
A Planarity Test via Construction Sequences
Optimal linear-time algorithms for testing the planarity of a graph are
well-known for over 35 years. However, these algorithms are quite involved and
recent publications still try to give simpler linear-time tests. We give a
simple reduction from planarity testing to the problem of computing a certain
construction of a 3-connected graph. The approach is different from previous
planarity tests; as key concept, we maintain a planar embedding that is
3-connected at each point in time. The algorithm runs in linear time and
computes a planar embedding if the input graph is planar and a
Kuratowski-subdivision otherwise
Deuteron photo-disintegration with polarised photons in the energy range 30 - 50 MeV
The reaction d(\vec\gamma,np) has been studied using the tagged and polarised
LADON gamma ray beam at an energy 30 - 50 MeV to investigate the existence of
narrow dibaryonic resonances recently suggested from the experimental
measurements in a different laboratory. The beam was obtained by Compton
back-scattering of laser light on the electrons of the storage ring ADONE.
Photo-neutron yields were measured at five neutron angle \vartheta_n = 22,
55.5, 90, 125 and 157 degrees in the center of mass system.Our results do not
support the existence of such resonances.Comment: 16 pages, Latex, 22 figures, 1 table. Nucl. Phys. A to appea
Recommended from our members
Nuclear Reaction Data Centers
The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab
Optical-Model Description of Time-Reversal Violation
A time-reversal-violating spin-correlation coefficient in the total cross
section for polarized neutrons incident on a tensor rank-2 polarized target is
calculated by assuming a time-reversal-noninvariant, parity-conserving
``five-fold" interaction in the neutron-nucleus optical potential. Results are
presented for the system for neutron incident energies
covering the range 1--20 MeV. From existing experimental bounds, a strength of
keV is deduced for the real and imaginary parts of the five-fold
term, which implies an upper bound of order on the relative -odd
strength when compared to the central real optical potential.Comment: 11 pages (Revtex
Benefit-Cost Analysis of FEMA Hazard Mitigation Grants
Mitigation ameliorates the impact of natural hazards on communities by reducing loss of life and injury, property and environmental damage, and social and economic disruption. The potential to reduce these losses brings many benefits, but every mitigation activity has a cost that must be considered in our world of limited resources. In principle benefit-cost analysis (BCA) can be used to assess a mitigation activityâs expected net benefits (discounted future benefits less discounted costs), but in practice this often proves difficult. This paper reports on a study that refined BCA methodologies and applied them to a national statistical sample of FEMA mitigation activities over a ten-year period for earthquake, flood, and wind hazards. The results indicate that the overall benefit-cost ratio for FEMA mitigation grants is about 4 to 1, though the ratio varies according to hazard and mitigation type.
The angular distribution of the reaction
The reaction is very important for low-energy
( MeV) antineutrino experiments. In this paper we calculate
the positron angular distribution, which at low energies is slightly backward.
We show that weak magnetism and recoil corrections have a large effect on the
angular distribution, making it isotropic at about 15 MeV and slightly forward
at higher energies. We also show that the behavior of the cross section and the
angular distribution can be well-understood analytically for MeV by calculating to , where is the nucleon mass. The
correct angular distribution is useful for separating events from other reactions and detector backgrounds, as well as for
possible localization of the source (e.g., a supernova) direction. We comment
on how similar corrections appear for the lepton angular distributions in the
deuteron breakup reactions and . Finally, in the reaction , the
angular distribution of the outgoing neutrons is strongly forward-peaked,
leading to a measurable separation in positron and neutron detection points,
also potentially useful for rejecting backgrounds or locating the source
direction.Comment: 10 pages, including 5 figure
Gemini Near Infrared Spectrograph -- Distant Quasar Survey: Augmented Spectroscopic Catalog and a Prescription for Correcting UV-Based Quasar Redshifts
Quasars at most often have redshifts measured from rest-frame
ultraviolet emission lines. One of the most common such lines, C IV
, shows blueshifts up to , and in
rare cases even higher. This blueshifting results in highly uncertain redshifts
when compared to redshift determinations from rest-frame optical emission
lines, e.g., from the narrow [O III] feature. We present
spectroscopic measurements for 260 sources at
having
mag from the Gemini Near Infrared
Spectrograph - Distant Quasar Survey (GNIRS-DQS) catalog, augmenting the
previous iteration which contained 226 of the 260 sources whose measurements
are improved upon in this work. We obtain reliable systemic redshifts based on
[O III] for a subset of 121 sources which we use to calibrate
prescriptions for correcting UV-based redshifts. These prescriptions are based
on a regression analysis involving C IV full-width-at-half-maximum intensity
and equivalent width, along with the UV continuum luminosity at a rest-frame
wavelength of 1350 A. Applying these corrections can improve the accuracy and
the precision in the C IV-based redshift by up to
and , respectively, which correspond to
Mpc and Mpc in comoving distance at . Our prescriptions
also improve the accuracy of the best available multi-feature redshift
determination algorithm by , indicating that the
spectroscopic properties of the C IV emission line can provide robust redshift
estimates for high-redshift quasars. We discuss the prospects of our
prescriptions for cosmological and quasar studies utilizing upcoming large
spectroscopic surveys.Comment: 20 pages (AASTeX 6.3.1), 8 figures, accepted for publication in Ap
- âŠ