193 research outputs found

    Monumental burials and memorial feasting: an example from the southern Brazilian highlands

    Get PDF
    © 2008 Antiquity PublicationsWhat happened at the sites of prehistoric burial mounds after they were erected? In the southern highlands of Brazil and Argentina the pre-Hispanic mounds of the twelfth-thirteenth centuries AD are surrounded by large circular enclosures with avenues leading to their centre. The authors discovered that the banks of the surrounding enclosure were built up over several generations of time, accompanied by a succession of ovens. Ethnohistoric observations of more recent peoples in the same region suggested an explanation: the cremation of a chief was followed by periodic feasts at his mound, where meat was steamed and maize beer prepared at the edge of the gathering.Research at site PM01 was funded by grants from the National Geographic Committee for Research and Exploration (CRE 7853-05) and the University of Exeter Exploration Fund

    Light-cone averaging in cosmology: formalism and applications

    Full text link
    We present a general gauge invariant formalism for defining cosmological averages that are relevant for observations based on light-like signals. Such averages involve either null hypersurfaces corresponding to a family of past light-cones or compact surfaces given by their intersection with timelike hypersurfaces. Generalized Buchert-Ehlers commutation rules for derivatives of these light-cone averages are given. After introducing some adapted "geodesic light-cone" coordinates, we give explicit expressions for averaging the redshift to luminosity-distance relation and the so-called "redshift drift" in a generic inhomogeneous Universe.Comment: 20 pages, 2 figures. Comments and references added, typos corrected. Version accepted for publication in JCA

    Backreaction on the luminosity-redshift relation from gauge invariant light-cone averaging

    Full text link
    Using a recently proposed gauge invariant formulation of light-cone averaging, together with adapted "geodesic light-cone" coordinates, we show how an "induced backreaction" effect emerges, in general, from correlated fluctuations in the luminosity distance and covariant integration measure. Considering a realistic stochastic spectrum of inhomogeneities of primordial (inflationary) origin we find that both the induced backreaction on the luminosity-redshift relation and the dispersion are larger than naively expected. On the other hand the former, at least to leading order and in the linear perturbative regime, cannot account by itself for the observed effects of dark energy at large-redshifts. A full second-order calculation, or even better a reliable estimate of contributions from the non-linear regime, appears to be necessary before firm conclusions on the correct interpretation of the data can be drawn.Comment: 22 pages, 4 figures. Comments and references added, Fig. 1 modified. Version accepted for publication in JCA

    The Genome-wide impact of Nipblb loss-of-function on Zebrafish gene expression

    Get PDF
    Transcriptional changes normally occur during development but also underlie differences between healthy and pathological conditions. Transcription factors or chromatin modifiers are involved in orchestrating gene activity, such as the cohesin genes and their regulator NIPBL. In our previous studies, using a zebrafish model for nipblb knockdown, we described the effect of nipblb loss-of-function in specific contexts, such as central nervous system development and hematopoiesis. However, the genome-wide transcriptional impact of nipblb loss-of-function in zebrafish embryos at diverse developmental stages remains under investigation. By RNA-seq analyses in zebrafish embryos at 24 h post-fertilization, we examined genome-wide effects of nipblb knockdown on transcriptional programs. Differential gene expression analysis revealed that nipblb loss-of-function has an impact on gene expression at 24 h post fertilization, mainly resulting in gene inactivation. A similar transcriptional effect has also been reported in other organisms, supporting the use of zebrafish as a model to understand the role of Nipbl in gene regulation during early vertebrate development. Moreover, we unraveled a connection between nipblb-dependent differential expression and gene expression patterns of hematological cell populations and AML subtypes, enforcing our previous evidence on the involvement of NIPBL-related transcriptional dysregulation in hematological malignancies

    Effect of lensing non-Gaussianity on the CMB power spectra

    Get PDF
    Observed CMB anisotropies are lensed, and the lensed power spectra can be calculated accurately assuming the lensing deflections are Gaussian. However, the lensing deflections are actually slightly non-Gaussian due to both non-linear large-scale structure growth and post-Born corrections. We calculate the leading correction to the lensed CMB power spectra from the non-Gaussianity, which is determined by the lensing bispectrum. The lowest-order result gives ∼0.3% corrections to the BB and EE polarization spectra on small-scales, however we show that the effect on EE is reduced by about a factor of two by higher-order Gaussian lensing smoothing, rendering the total effect safely negligible for the foreseeable future. We give a simple analytic model for the signal expected from skewness of the large-scale lensing field; the effect is similar to a net demagnification and hence a small change in acoustic scale (and therefore out of phase with the dominant lensing smoothing that predominantly affects the peaks and troughs of the power spectrum)

    Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset

    Get PDF
    Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovarian dysgenesis and primary amenorrhea to post-pubertal secondary amenorrhea, with elevated serum gonadotropins and hypoestrogenism. The ovarian defect still remains idiopathic in some cases; however, a strong genetic component has been demonstrated by the next-generation sequencing (NGS) approach of familiar and sporadic POI cases. As recent evidence suggested an oligogenic architecture for POI, we developed a target NGS panel with 295 genes including known candidates and novel genetic determinants potentially involved in POI pathogenesis. Sixty-four patients with early onset POI (range: 10–25 years) of our cohort have been screened with 90% of target coverage at 50×. Here, we report 48 analyzed patients with at least one genetic variant (75%) in the selected candidate genes. In particular, we found the following: 11/64 patients (17%) with two variants, 9/64 (14%) with three variants, 9/64 (14%) with four variants, 3/64 (5%) with five variants, and 2/64 (3%) with six variants. The most severe phenotypes were associated with either the major number of variations or a worse prediction in pathogenicity of variants. Bioinformatic gene ontology analysis identified the following major pathways likely affected by gene variants: 1) cell cycle, meiosis, and DNA repair; 2) extracellular matrix remodeling; 3) reproduction; 4) cell metabolism; 5) cell proliferation; 6) calcium homeostasis; 7) NOTCH signaling; 8) signal transduction; 9) WNT signaling; 10) cell death; and 11) ubiquitin modifications. Consistently, the identified pathways have been described in other studies dissecting the mechanisms of folliculogenesis in animal models of altered fertility. In conclusion, our results contribute to define POI as an oligogenic disease and suggest novel candidates to be investigated in patients with POI

    Targeted whole exome sequencing and Drosophila modelling to unveil the molecular basis of primary ovarian insufficiency

    Get PDF
    STUDY QUESTION: Can a targeted whole exome sequencing (WES) on a cohort of women showing a primary ovarian insufficiency (POI) phenotype at a young age, combined with a study of copy number variations, identify variants in candidate genes confirming their deleterious effect on ovarian function? SUMMARY ANSWER: This integrated approach has proved effective in identifying novel candidate genes unveiling mechanisms involved in POI pathogenesis. WHAT IS KNOWN ALREADY: POI, a condition occurring in 1% of women under 40 years of age, affects women’s fertility leading to a premature loss of ovarian reserve. The genetic causes of POI are highly heterogeneous and several determinants contributing to its prominent oligogenic inheritance pattern still need to be elucidated. STUDY DESIGN, SIZE, DURATION: WES screening for pathogenic variants of 41 Italian women with non-syndromic primary and early secondary amenorrhoea occurring before age 25 was replicated on another 60 POI patients, including 35 French and 25 American women, to reveal statistically significant shared variants. PARTICIPANTS/MATERIALS, SETTING, METHODS: The Italian POI patients’ DNA were processed by targeted WES including 542 RefSeq genes expressed or functioning during distinct reproductive or ovarian processes (e.g. DNA repair, meiosis, oocyte maturation, folliculogenesis and menopause). Extremely rare variants were filtered and selected by means of a Fisher Exact test using several publicly available datasets. A case-control Burden test was applied to highlight the most significant genes using two ad-hoc control female cohorts. To support the obtained data, the identified genes were screened on a novel cohort of 60 Caucasian POI patients and the same case-control analysis was carried out. Comparative analysis of the human identified genes was performed on mouse and Drosophila melanogaster by analysing the orthologous genes in their ovarian phenotype, and two of the selected genes were fruit fly modelled to explore their role in fertility. MAIN RESULTS AND THE ROLE OF CHANCE: The filtering steps applied to search for extremely rare pathogenic variants in the Italian cohort revealed 64 validated single-nucleotide variants/Indels in 59 genes in 30 out of 41 screened women. Burden test analysis highlighted 13 ovarian genes as being the most enriched and significant. To validate these findings, filtering steps and Burden analysis on the second cohort of Caucasian patients yielded 11 significantly enriched genes. Among them, AFP, DMRT3, MOV10, FYN and MYC were significant in both patient cohorts and hence were considered strong candidates for POI. Mouse and Drosophila comparative analysis evaluated a conserved role through the evolution of several candidates, and functional studies using a Drosophila model, when applicable, supported the conserved role of the MOV10 armitage and DMRT3 dmrt93B orthologues in female fertility. LARGE SCALE DATA: The datasets for the Italian cohort generated during the current study are publicly available at ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/): accession numbers SCV001364312 to SCV001364375. LIMITATIONS, REASONS FOR CAUTION: This is a targeted WES analysis hunting variants in candidate genes previously identified by different genomic approaches. For most of the investigated sporadic cases, we could not track the parental inheritance, due to unavailability of the parents’ DNA samples; in addition, we might have overlooked additional rare variants in novel candidate POI genes extracted from the exome data. On the contrary, we might have considered some inherited variants whose clinical significance is uncertain and might not be causative for the patients’ phenotype. Additionally, as regards the Drosophila model, it will be extremely important in the future to have more mutants or RNAi strains available for each candidate gene in order to validate their role in POI pathogenesis. WIDER IMPLICATIONS OF THE FINDINGS: The genomic, statistical, comparative and functional approaches integrated in our study convincingly support the extremely heterogeneous oligogenic nature of POI, and confirm the maintenance across the evolution of some key genes safeguarding fertility and successful reproduction. Two principal classes of genes were identified: (i) genes primarily involved in meiosis, namely in synaptonemal complex formation, asymmetric division and oocyte maturation and (ii) genes safeguarding cell maintenance (piRNA and DNA repair pathways). STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Italian Ministry of Health grants ‘Ricerca Corrente’ (08C621_2016 and 08C924_2019) provided to IRCCS Istituto Auxologico Italiano, and by ‘Piano Sostegno alla Ricerca’ (PSR2020_FINELLI_LINEA_B) provided by the University of Milan; M.P.B. was supported by Telethon-Italy (grant number GG14181). There are no conflicts of interest

    Dysregulation of NIPBL leads to impaired RUNX1 expression and hematopoietic defects

    Get PDF
    The transcription factor RUNX1, a pivotal regulator of HSCs and haematopoiesis, is a frequent target of chromosomal translocations, point mutations or altered gene/protein dosage. These modifications lead or contribute to the development of myelodysplasia, leukaemia or platelet disorders. A better understanding of how regulatory elements contribute to fine-tune the RUNX1 expression in haematopoietic tissues could improve our knowledge of the mechanisms responsible for normal haematopoiesis and malignancy insurgence. The cohesin RAD21 was reported to be a regulator of RUNX1 expression in the human myeloid HL60 cell line and during primitive haematopoiesis in zebrafish. In our study, we demonstrate that another cohesin, NIPBL, exerts positive regulation of RUNX1 in three different contexts in which RUNX1 displays important functions: in megakaryocytes derived from healthy donors, in bone marrow samples obtained from adult patients with acute myeloid leukaemia and during zebrafish haematopoiesis. In this model, we demonstrate that alterations in the zebrafish orthologue nipblb reduce runx1 expression with consequent defects in its erythroid and myeloid targets such as gata1a and spi1b in an opposite way to rad21. Thus, also in the absence of RUNX1 translocation or mutations, additional factors such as defects in the expression of NIPBL might induce haematological diseases

    Targeted whole exome sequencing and Drosophila modelling to unveil the molecular basis of primary ovarian insufficiency

    Get PDF
    STUDY QUESTION: Can a targeted whole exome sequencing (WES) on a cohort of women showing a primary ovarian insufficiency (POI) phenotype at a young age, combined with a study of copy number variations, identify variants in candidate genes confirming their deleterious effect on ovarian function? SUMMARY ANSWER: This integrated approach has proved effective in identifying novel candidate genes unveiling mechanisms involved in POI pathogenesis. WHAT IS KNOWN ALREADY: POI, a condition occurring in 1% of women under 40 years of age, affects women’s fertility leading to a premature loss of ovarian reserve. The genetic causes of POI are highly heterogeneous and several determinants contributing to its promi-nent oligogenic inheritance pattern still need to be elucidated. STUDY DESIGN, SIZE, DURATION: WES screening for pathogenic variants of 41 Italian women with non-syndromic primary and early secondary amenorrhoea occurring before age 25 was replicated on another 60 POI patients, including 35 French and 25 American women, to reveal statistically significant shared variants. PARTICIPANTS/MATERIALS, SETTING, METHODS: The Italian POI patients’ DNA were processed by targeted WES including 542 RefSeq genes expressed or functioning during distinct reproductive or ovarian processes (e.g. DNA repair, meiosis, oocyte maturation, folliculogenesis and menopause). Extremely rare variants were filtered and selected by means of a Fisher Exact test using several publicly available datasets. A case-control Burden test was applied to highlight the most significant genes using two ad-hoc control female cohorts. To support the obtained data, the identified genes were screened on a novel cohort of 60 Caucasian POI patients and the same case-control analysis was carried out. Comparative analysis of the human identified genes was performed on mouse and Drosophila melanogaster by analysing the orthologous genes in their ovarian phenotype, and two of the selected genes were fruit fly modelled to explore their role in fertility.MAIN RESULTS AND THE ROLE OF CHANCE: The filtering steps applied to search for extremely rare pathogenic variants in the Italian cohort revealed 64 validated single-nucleotide variants/Indels in 59 genes in 30 out of 41 screened women. Burden test analysis highlighted 13 ovarian genes as being the most enriched and significant. To validate these findings, filtering steps and Burden analysis on the second cohort of Caucasian patients yielded 11 significantly enriched genes. Among them, AFP, DMRT3, MOV10, FYN and MYC were significant in both patient cohorts and hence were considered strong candidates for POI. Mouse and Drosophila comparative analysis evaluated a conserved role through the evolution of several candidates, and functional studies using a Drosophila model, when applicable, supported the conserved role of the MOV10 armitage and DMRT3 dmrt93B orthologues in female fertility
    corecore