1,385 research outputs found

    A possible mechanism for superconductivity in doped SrTiO3

    Full text link
    The soft ferro-electric phonon in SrTiO3 observed with optical spectroscopy has an extraordinary strong spectral weight which is much stronger than expected in the limit of a perfectly ionic compound. The "charged phonon" in SrTiO3 is caused by the close-to-covalent character of the Ti-O ionic bond and implies a strong coupling between the soft ferro-electric phonon and the inter band transitions across the 3 eV gap of SrTiO3. We demonstrate that this coupling leads, in addition to the charged phonon effect, to a pairing interaction involving the exchange of two transverse optical phonons. This process owes its relevance to the strong electron-phonon coupling and to the fact that the interaction mediated by a single transverse optical phonon vanishes at low electron density. We use the experimental soft phonon spectral weight to calculate the strength of the bi-phonon mediated pairing interaction in the electron doped material and show that it is of the correct magnitude when compared to the experimental value of the superconducting critical temperature.Comment: Missing factors corrected in Eqs. 6 and

    The fate of quasiparticles in the superconducting state

    Full text link
    Quasiparticle properties in the superconducting state are masked by the superfluid and are not directly accessible to infrared spectroscopy. We show how one can use a Kramers--Kronig transformation to separate the quasiparticle from superfluid response and extract intrinsic quasiparticle properties in the superconducting state. We also address the issue of a narrow quasiparticle peak observed in microwave measurements, and demonstrate how it can be combined with infrared measurements to obtain unified picture of electrodynamic properties of cuprate superconductors

    Induction methods used in low temperature physics

    Get PDF
    A study has been made of induction bridges used in low temperature physics.\ud \ud In Part 1 the design of a mutual inductance bridge of the Hartshorn type is discussed. This design is based on a critical analysis of impurity effects of the different parts of the Hartshorn bridge. With this equipment frequencies up to 0.5 MHz can be used. Two methods have been developed to examine the secondary signal. In one of these use has been made of AD conversion techniques. In the other one, the secondary signal, produced by a superconducting sample, which is generally distorted, is analysed by using a Fourier expansion.\ud \ud In Part 2 equipment is described which enables us to measure the phase and amplitude of the harmonics of the output signal of the bridge. For synchronous detection a reference signal of the same frequency of the harmonic of interest is required. This reference signal is generated from the input signal of the bridge by means of a digital frequency multiplier with programmable multiplication factor N.\ud \ud In Part 3 some experimental results, showing the possibilities of the equipment, on some superconductors are presented

    The black hole in IC 1459 from HST observations of the ionized gas disk

    Full text link
    The peculiar elliptical galaxy IC 1459 (M_V = -21.19, D = 16.5 Mpc) has a fast counterrotating stellar core, stellar shells and ripples, a blue nuclear point source and strong radio core emission. We present results of a detailed HST study of IC 1459, and in particular its central gas disk, aimed a constraining the central mass distribution. We obtained WFPC2 narrow-band imaging centered on the Halpha+[NII] emission lines to determine the flux distribution of the gas emission at small radii, and we obtained FOS spectra at six aperture positions along the major axis to sample the gas kinematics. We construct different dynamical models for the Halpha+[NII] and Hbeta kinematics that include a supermassive black hole, and in which the stellar mass distribution is constrained by the observed surface brightness distribution and ground-based stellar kinematics. All models are consistent with a black hole mass in the range Mbh=1-4 x 10^8 Msun, and models without a black hole are always ruled out at high confidence.Comment: 40 pages including 14 figures, Latex; submitted to A

    Black Hole Masses and Host Galaxy Evolution of Radio-loud Active Galactic Nuclei

    Full text link
    We report stellar velocity dispersion measurements for a sample of 28 AGN host galaxies including our previous work. Using the mass-dispersion (M∙−σM_{\bullet}-\sigma) and the fundamental plane relations, we estimate the black hole mass for a sample of 66 BL Lac objects and investigate the role of black hole mass in the energetics of BL Lac objects. The black hole mass range for different BL Lac spectral types is similar, 107<M∙<4×10910^{7} < M_{\bullet} < 4 \times 10^{9}. Neither X-ray nor radio luminosity correlates with black hole mass. Low-frequency-peaked BL Lac objects have higher Eddington ratios on average, because of either more beaming or higher intrinsic power. For the black hole mass range 3×107<M∙<1093 \times 10^{7} < M_{\bullet} < 10^{9}, the radio luminosity of BL Lac objects and flat-spectrum radio quasars spans over 4 orders of magnitude, with BL Lac objects being low-power AGNs. We also investigate the evolution of host galaxies for 39 AGNs out to z≈0.5z \approx 0.5 with measuredstellar velocity dispersions. Comparing the mass-to-light ratio evolution in the observed frame with population synthesis models, we find that single burst star formation models with zform=1.4−0.2+0.9z_{form} = 1.4^{+0.9}_{-0.2} are consistent with the observations. From our zform=1.4z_{form}=1.4 model, we estimated the intrinsic mass-to-light ratio evolution in the Cousins RR band, Δlog(M/L)/Δz=−0.502±0.08\Delta log (M/L)/ \Delta z = -0.502 \pm 0.08, consistent with that of normal early type galaxies.Comment: ApJ accepted, 22 pages, 11 figure

    Dynamics of the nuclear gas & dust disc in the E4 radio galaxy NGC 7052

    Full text link
    We present high spatial resolution ground-based broad-band imaging, H-alpha +[NII] narrow-band imaging and long-slit spectroscopy for the E4 radio galaxy NGC 7052, which has a nuclear dust disc. We detect ionized gas with a LINER spectrum, residing also in a nuclear disc. The gas rotates rapidly and the emission line widths increase towards the nucleus. The images are well fit by an axisymmetric model with the gas and dust in a disc of 1.5" radius (340 pc) in the equatorial plane of the stellar body, viewed at an inclination of 70 degrees. We assume the gas to be on circular orbits in the equatorial plane, with in addition a local turbulent velocity dispersion. The circular velocity is calculated from the combined gravitational potential of the stars and a possible nuclear black hole. The observed gas rotation curve is well fit, either with or without a black hole. Turbulent velocities >300 km/s must be present at radii <0.5" to fit the observed nuclear line widths. Models with a black hole and no turbulence can also fit the line widths, but these models cannot fit the observed nuclear line shapes. Models with both a black hole and gas turbulence can fit the data well, but the black hole is not required by the data, and if present, its mass must be < 5 x 10^8 solar masses. This upper limit is 5 times smaller than the black hole mass inferred for M87 from HST data. Our modelling and analysis techniques will be useful also for the study of the kinematics of nuclear gas discs in other galaxies. Such data will yield important information on the presence of massive black holes.Comment: 15 pages, uuencoded compressed PostScript, without the figures. Figures at ftp://eku.ias.edu/pub/marel/ngc7052fig.u

    The counterrotating core and the black hole mass of IC1459

    Get PDF
    The E3 giant elliptical galaxy IC1459 is the prototypical galaxy with a fast counterrotating stellar core. We obtained one HST/STIS long-slit spectrum along the major axis of this galaxy and CTIO spectra along five position angles. We present self-consistent three-integral axisymmetric models of the stellar kinematics, obtained with Schwarzschild's numerical orbit superposition method. We study the dynamics of the kinematically decoupled core (KDC) in IC1459 and we find it consists of stars that are well-separated from the rest of the galaxy in phase space. The stars in the KDC counterrotate in a disk on orbits that are close to circular. We estimate that the KDC mass is ~0.5% of the total galaxy mass or ~3*10^9 Msun. We estimate the central black hole mass M_BH of IC1459 independently from both its stellar and its gaseous kinematics. Some complications probably explain why we find rather discrepant BH masses with the different methods. The stellar kinematics suggest that M_BH = (2.6 +/- 1.1)*10^9 Msun (3 sigma error). The gas kinematics suggests that M_BH ~ 3.5*10^8 Msun if the gas is assumed to rotate at the circular velocity in a thin disk. If the observed velocity dispersion of the gas is assumed to be gravitational, then M_BH could be as high as ~1.0*10^9 Msun. These different estimates bracket the value M_BH = (1.1 +/- 0.3)*10^9 Msun predicted by the M_BH-sigma relation. It will be an important goal for future studies to assess the reliability of black hole mass determinations with either technique. This is essential if one wants to interpret the correlation between the BH mass and other global galaxy parameters (e.g. velocity dispersion) and in particular the scatter in these correlations (believed to be only ~0.3 dex). [Abridged]Comment: 51 pages, LaTeX with 19 PostScript figures. Revised version, with three new figures and data tables. To appear in The Astrophysical Journal, 578, 2002 October 2
    • 

    corecore