6,175 research outputs found

    Diffusion anomaly and dynamic transitions in the Bell-Lavis water model

    Full text link
    In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The Bell-Lavis model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density (TMD). Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded

    Do Malaria Vector control Measures Impact Disease-Related Behaviour and Knowledge? Evidence from a Large-scale Larviciding Intervention in Tanzania.

    Get PDF
    Recent efforts of accelerated malaria control towards the long-term goal of elimination had significant impacts in reducing malaria transmission. While these efforts need to be sustained over time, a scenario of low transmission could bring about changes in individual disease risk perception, hindering adherence to protective measures, and affecting disease-related knowledge. The goal of this study was to investigate the potential impact of a successful malaria vector control intervention on bed net usage and malaria-related knowledge. Dar es Salaam's Urban Malaria Control Program was launched in 2004 with the aim of developing a sustainable larviciding intervention. Larviciding was scaled-up using a stepped-wedge design. Cross-sectional and longitudinal data were collected using a randomized cluster sampling design (2004--2008). Prevalence ratios (PR) for the effect of the larviciding intervention on bed net usage (N = 64,537) and household heads' knowledge of malaria symptoms and transmission (N = 11,254) were obtained from random effects regression models.\ud The probability that individuals targeted by larviciding had used a bed net was reduced by 5% as compared to those in non-intervention areas (PR = 0.95; 95% credible intervals (CrI): 0.94-0.97) and the magnitude of this effect increased with time. Larviciding also led to a decline in household heads' knowledge of malaria symptoms (PR = 0.88; 95% CrI: 0.83-0.92) but no evidence of effect on knowledge of malaria transmission was found. Successful control interventions could bring about further challenges to sustaining gains in reducing malaria transmission if not accompanied by strategies to avoid changes in individual knowledge and behaviour. This study points to two major research gaps. First, there is an urgent need to gather more evidence on the extent to which countries that have achieved significant decline in malaria transmission are also observing changes in individual behaviour and knowledge. Second, multidisciplinary assessments that combine quantitative and qualitative data, utilizing theories of health behaviour and theories of knowledge, are needed to optimize efforts of national malaria control programmes, and ultimately contribute to sustained reduction in malaria transmission

    Dynamic Transitions in a Two Dimensional Associating Lattice Gas Model

    Full text link
    Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical λ\lambda-line. The high density liquid phase and the fluid phases are separated by a second τ\tau critical line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong trans ition when the critical λ\lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the τ\tau-critical line is crossed by decreasing the temperature at a constant chemical potential.Comment: 22 page

    Phase Diagram and Thermodynamic and Dynamic Anomalies in a Pure Repulsive Model

    Get PDF
    Using Monte Carlo simulations a lattice gas model with only repulsive interactions was checked for the presence of anomalies. We show that this system exhibits the density (temperature of maximum density - TMD) and diffusion anomalies as present in liquid water. These anomalous behavior exist in the region of the chemical potential vs temperature phase diagram where two structured phases are present. A fragile-to-strong dynamic transition is also observed in the vicinity of the TMD line
    corecore