35 research outputs found

    Emotion-Related Visual Mismatch Responses in Schizophrenia: Impairments and Correlations with Emotion Recognition.

    Get PDF
    BACKGROUND AND OBJECTIVES:Mismatch negativity (MMN) is an event-related potential (ERP) measure of preattentional sensory processing. While deficits in the auditory MMN are robust electrophysiological findings in schizophrenia, little is known about visual mismatch response and its association with social cognitive functions such as emotion recognition in schizophrenia. Our aim was to study the potential deficit in the visual mismatch response to unexpected facial emotions in schizophrenia and its association with emotion recognition impairments, and to localize the sources of the mismatch signals. EXPERIMENTAL DESIGN:The sample comprised 24 patients with schizophrenia and 24 healthy control subjects. Controls were matched individually to patients by gender, age, and education. ERPs were recorded using a high-density 128-channel BioSemi amplifier. Mismatch responses to happy and fearful faces were determined in 2 time windows over six regions of interest (ROIs). Emotion recognition performance and its association with the mismatch response were also investigated. PRINCIPAL OBSERVATIONS:Mismatch signals to both emotional conditions were significantly attenuated in patients compared to controls in central and temporal ROIs. Controls recognized emotions significantly better than patients. The association between overall emotion recognition performance and mismatch response to the happy condition was significant in the 250-360 ms time window in the central ROI. The estimated sources of the mismatch responses for both emotional conditions were localized in frontal regions, where patients showed significantly lower activity. CONCLUSIONS:Impaired generation of mismatch signals indicate insufficient automatic processing of emotions in patients with schizophrenia, which correlates strongly with decreased emotion recognition

    Microbial diversity in waters, sediments and microbial mats evaluated using fatty acid-based methods

    Get PDF
    The review summarises recent advances towards a greater comprehensive assessment of microbial diversity in aquatic environments using the fatty acid methyl esters and phospholipid fatty acids approaches. These methods are commonly used in microbial ecology because they do not require the culturing of micro-organisms, are quantitative and reproducible and provide valuable information regarding the structure of entire microbial communities. Because some fatty acids are associated with taxonomic and functional groups of micro-organisms, they allow particular groups of micro-organisms to be distinguished. The integration of fatty acid-based methods with stable isotopes, RNA and DNA analyses enhances our knowledge of the role of micro-organisms in global nutrient cycles, functional activity and phylogenetic lineages within microbial communities. Additionally, the analysis of fatty acid profiles enables the shifts in the microbial diversity in pristine and contaminated environments to be monitored. The main objective of this review is to present the use of lipid-based approaches for the characterisation of microbial communities in water columns, sediments and biomats

    Iron associated with exopolymeric substances is highly bioavailable to oceanic phytoplankton

    No full text
    Growth limitation of marine algae due to lack of iron occurs in up to 40% of the global ocean. Despite important advances on the impact of organic compounds on iron biogeochemistry, their roles in controlling iron availability to prokaryotic and eukaryotic phytoplankton remain unclear. Whether algal and bacterial exopolymeric substances (EPS) include organic ligands which may help iron-limited phytoplankton growth remains an unknown. If so, then EPS could relieve phytoplankton iron limitation with implications for the biological carbon pump and hence the regulation of atmospheric CO2. Here we compared the biological impact of algal, bacterial and in situ EPS with model compounds, a siderophore and two saccharides on biological parameters including, iron bioavailability, phytoplankton growth, photo-physiology and community structure. Laboratory and field experiments demonstrated that EPS produced by marine microorganisms are efficient in sustaining biological iron uptake as well as algal growth, and can affect natural phytoplankton community structure. Our data suggest that natural phytoplankton growth enhancement in the presence of EPS was not solely due to highly bioavailable iron forms, but also because EPS contains other micronutrients. Stronger ligands were detected following iron-siderophore enrichments (log KFe′L = 12.0) and weaker ligands were measured in the presence of EPS (log KFe′L = 10.4–11.0). The trend of the conditional stability constants of organic ligands did not seem to be affected as a result of biological activity and photo-chemistry during our four day incubations. The shift in the phytoplankton community observed during our field experiments was not uniformly observed between different sites rendering it difficult to extrapolate which functional group(s) would benefit the most from iron bound to EPS
    corecore