3,073 research outputs found

    Cotunneling-mediated transport through excited states in the Coulomb blockade regime

    Full text link
    We present finite bias transport measurements on a few-electron quantum dot. In the Coulomb blockade regime, strong signatures of inelastic cotunneling occur which can directly be assigned to excited states observed in the non-blockaded regime. In addition, we observe structures related to sequential tunneling through the dot, occuring after it has been excited by an inelastic cotunneling process. We explain our findings using transport calculations within the real-time Green's function approach, including diagrams up to fourth order in the tunneling matrix elements.Comment: 4 pages, 3 figure

    Universal behavior of quantum Green's functions

    Full text link
    We consider a general one-particle Hamiltonian H = - \Delta_r + u(r) defined in a d-dimensional domain. The object of interest is the time-independent Green function G_z(r,r') = . Recently, in one dimension (1D), the Green's function problem was solved explicitly in inverse form, with diagonal elements of Green's function as prescribed variables. The first aim of this paper is to extract from the 1D inverse solution such information about Green's function which cannot be deduced directly from its definition. Among others, this information involves universal, i.e. u(r)-independent, behavior of Green's function close to the domain boundary. The second aim is to extend the inverse formalism to higher dimensions, especially to 3D, and to derive the universal form of Green's function for various shapes of the confining domain boundary.Comment: 46 pages, the shortened version submitted to J. Math. Phy

    Petrogenesis of diachronous mixed siliciclastic-carbonate megafacies in the cool-water Oligocene Tikorangi Formation, Taranaki Basin, New Zealand

    Get PDF
    The Oligocene (Whaingaroan-Waitakian) Tikorangi Formation is a totally subsurface, lithostratigraphically complex, mixed siliciclastic-limestone-rich sequence forming an important fracture reservoir within Taranaki Basin, New Zealand. Petrographically the formation comprises a spectrum of interbedded rock types ranging from calcareous mudstone to wackestone to packstone to clean sparry grainstone. Skeletal and textural varieties within these rock types have aided in the identification of three environmentally distinctive megafacies for the Tikorangi Formation rocks-shelfal, foredeep, and basinal. Data from these megafacies have been used to detail previous conclusions on the petrogenesis and to further refine depositional paleoenvironmental models for the Tikorangi Formation in the central eastern Taranaki Basin margin.Shelfal Megafacies 1 rocks (reference well Hu Road-1A) are latest Oligocene (early Waitakian) in age and formed on or proximal to the Patea-Tongaporutu-Herangi basement high. They are characterised by coarse, skeletal-rich, pure sparry grainstone comprising shallow water, high energy taxa (bryozoans, barnacles, red algae) and admixtures of coarse well-rounded lithic sand derived from Mesozoic basement greywacke. This facies type has previously gone unrecorded in the Tikorangi Formation. Megafacies 2 is a latest Oligocene (early Waitakian) foredeep megafacies (formerly named shelfal facies) formed immediately basinward and west of the shelfal basement platform. It accumulated relatively rapidly (>20 cm/ka) from redeposition of shelfal megafacies biota that became intermixed with bathyal taxa to produce a spectrum of typically mudstone through to sparry grainstone. The resulting skeletal mix (bivalve, echinoderm, planktic and benthic foraminiferal, red algal, bryozoan, nannofossil) is unlike that in any of the age-equivalent limestone units in neighbouring onland King Country Basin. Megafacies 3 is an Oligocene (Whaingaroan-Waitakian) offshore basinal megafacies (formerly termed bathyal facies) of planktic foraminiferal-nannofossil-siliciclastic wackestone and mudstone formed away from redepositional influences. The siliciclastic input in this distal basinal setting (sedimentation rates <7 mm/ka) was probably sourced mainly from oceanic currents carrying suspended sediment from South Island provenances exposed at this time.Tikorangi Formation rocks record the Taranaki Basin’s only period of carbonate-dominated sedimentation across a full range of shelfal, foredeep, and basinal settings. Depositional controls on the three contrasting megafacies were fundamentally the interplay of an evolving and complex plate tectonic setting, including development of a carbonate foredeep, changes in relative sea level within an overall transgressive regime, and changing availability, sources, and modes of deposition of both bioclastic and siliciclastic sediments. The mixed siliciclastic-carbonate nature of the formation, and its skeletal assemblages, low-Mg calcite mineralogy, and delayed deep burial diagenetic history, are features consistent with formation in temperate-latitude cool waters

    Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses

    Get PDF
    Here, the contribution of stomatal and nonstomatal factors to photosynthetic inhibition under water stress in four tropical C(4) grasses was investigated (Panicum coloratum, Bothriochloa bladhii, Cenchrus ciliaris and Astrebla lappacea ). Plants were grown in well watered soil, and then the effects of soil drying were measured on leaf gas exchange, chlorophyll a fluorescence and water relations. During the drying cycle, leaf water potential (Psi(leaf)) and relative water content (RWC) decreased from c. -0.4 to -2.8 MPa and 100-40%, respectively. The CO(2) assimilation rates (A) and quantum yield of PSII (Phi(PSII)) of all four grasses decreased rapidly with declining RWC. High CO(2) concentration (2500 mul l(-1)) had no effect on A or Phi(PSII) at any stage of the drying cycle. Electron transport capacity and dark respiration rates were unaltered by drought. The CO(2) compensation concentrations of P. coloratum and C. ciliaris rose sharply when leaf RWC fell below 70%. In P. coloratum, 5% CO(2) did not prevent the decline of O(2) evolution rates under water stress. We conclude that inhibition of photosynthesis in the four C(4) grasses under water stress is dependent mainly on biochemical limitations

    Quasi-stationary States of Two-Dimensional Electron Plasma Trapped in Magnetic Field

    Full text link
    We have performed numerical simulations on a pure electron plasma system under a strong magnetic field, in order to examine quasi-stationary states that the system eventually evolves into. We use ring states as the initial states, changing the width, and find that the system evolves into a vortex crystal state from a thinner-ring state while a state with a single-peaked density distribution is obtained from a thicker-ring initial state. For those quasi-stationary states, density distribution and macroscopic observables are defined on the basis of a coarse-grained density field. We compare our results with experiments and some statistical theories, which include the Gibbs-Boltzmann statistics, Tsallis statistics, the fluid entropy theory, and the minimum enstrophy state. From some of those initial states, we obtain the quasi-stationary states which are close to the minimum enstrophy state, but we also find that the quasi-stationary states depend upon initial states, even if the initial states have the same energy and angular momentum, which means the ergodicity does not hold.Comment: 9 pages, 7 figure
    • 

    corecore