11,118 research outputs found

    Scalar-tensor theories, trace anomalies and the QCD-frame

    Full text link
    We consider the quantum effects of matter fields in scalar-tensor theories and clarify the role of trace anomaly when switching between conformally related `frames'. We exploit the property that the couplings between the scalar and the gauge fields are not frame-invariant in order to define a `QCD-frame', where the scalar is not coupled to the gluons. We show that this frame is a natural generalization of the `Jordan frame' in the case of non-metric theories and that it is particularly convenient for gravitational phenomenology: test bodies have trajectories that are as close as possible to geodesics with respect to such a metric and equivalence principle violations are directly proportional to the scalar coupling parameters written in this frame. We show how RG flow and decoupling work in metric and non-metric theories. RG-running commutes with the operation of switching between frames at different scales. When only matter loops are considered, our analysis confirms that metricity is stable under radiative corrections and shows that approximate metricity is natural in a technical sense.Comment: 10 pages. Minor changes to the main text, appendix added. To appear on PR

    A complete family of separability criteria

    Get PDF
    We introduce a new family of separability criteria that are based on the existence of extensions of a bipartite quantum state ρ\rho to a larger number of parties satisfying certain symmetry properties. It can be easily shown that all separable states have the required extensions, so the non-existence of such an extension for a particular state implies that the state is entangled. One of the main advantages of this approach is that searching for the extension can be cast as a convex optimization problem known as a semidefinite program (SDP). Whenever an extension does not exist, the dual optimization constructs an explicit entanglement witness for the particular state. These separability tests can be ordered in a hierarchical structure whose first step corresponds to the well-known Positive Partial Transpose (Peres-Horodecki) criterion, and each test in the hierarchy is at least as powerful as the preceding one. This hierarchy is complete, in the sense that any entangled state is guaranteed to fail a test at some finite point in the hierarchy, thus showing it is entangled. The entanglement witnesses corresponding to each step of the hierarchy have well-defined and very interesting algebraic properties that in turn allow for a characterization of the interior of the set of positive maps. Coupled with some recent results on the computational complexity of the separability problem, which has been shown to be NP-hard, this hierarchy of tests gives a complete and also computationally and theoretically appealing characterization of mixed bipartite entangled states.Comment: 21 pages. Expanded introduction. References added, typos corrected. Accepted for publication in Physical Review

    Detection of t(7;12)(q36;p13) in paediatric leukaemia using dual colour fluorescence in situ hybridisation

    Get PDF
    The identification of chromosomal rearrangements is of utmost importance for the diagnosis and classification of specific leukaemia subtypes and therefore has an impact on therapy choices in individual cases. The t(7;12)(q36;p13) is a cryptic rearrangement that is difficult to recognise using conventional cytogenetic methods and is often undetected by reverse transcription polymerase chain reaction due to the absence of a fusion transcript in many cases. Here we present a reliable and easy to use dual colour fluorescence in situ hybridisation assay for the detection of the t(7;12)(q36;p13) rearrangement. A comparison with previous similar work is given and advantages and limitations of this novel approach are discussed

    Non trivial behavior of the linear response function in phase ordering kinetics

    Full text link
    Drawing from exact, approximate and numerical results an overview of the properties of the out of equilibrium response function in phase ordering kinetics is presented. Focusing on the zero field cooled magnetization, emphasis is on those features of this quantity which display non trivial behavior when relaxation proceeds by coarsening. Prominent among these is the dimensionality dependence of the scaling exponent aχa_{\chi} which leads to failure of the connection between static and dynamic properties at the lower dimensionality dLd_L, where aχ=0a_{\chi}=0. We also analyse the mean spherical model as an explicit example of a stochastic unstable system, for which the connection between statics and dynamics fails at all dimensionalities.Comment: 10 pages, 2 figures. Contribution to the International Conference "Perspectives on Quantum Field Theory, Statistical Mechanics and Stochastics" in honour of the 60th birthday of Francesco Guerr

    Finite-temperature properties of frustrated classical spins coupled to the lattice

    Full text link
    We present extensive Monte Carlo simulations for a classical antiferromagnetic Heisenberg model with both nearest (J1J_1) and next-nearest (J2J_2) exchange couplings on the square lattice coupled to the lattice degrees of freedom. The Ising-like phase transition, that appears for J2/J1>1/2J_2/J_1>1/2 in the pure spin model, is strengthened by the spin-lattice coupling, and is accompanied by a lattice deformation from a tetragonal symmetry to an orthorhombic one. Evidences that the universality class of the transition does not change with the inclusion of the spin-lattice coupling are reported. Implications for Li2VOSiO4{\rm Li_2VOSiO_4}, the prototype for a layered J1J2J_1{-}J_2 model in the collinear regime, are also discussed.Comment: 6 pages and 8 figure

    Numerical simulation of Crotone flood: Storm evolution

    Get PDF
    A nested-grid primitive equation model (RAMS, version 4.3) is used to simulate a high-precipitation (HP) storm which occurred in Calabria, Southern Italy. Storm produced intense rainfall over the city of Crotone, in the central Ionian coast of Calabrian peninsula, during the morning of 14 October 1996. Precipitation spell lasted for two hours, was highly localized and rainfall rates were intense (> 60 mm/h). The aim of this paper is to reproduce precipitation measured by raingauges and to highlight local and synoptic conditions that determined the storm, in order to acquire insight into the convective environment that produced the event. Four telescoping nested grids allow to simulate scales ranging from the synoptic scale down to the high-precipitation storm. All convection in the simulation is initiated by resolving explicitly vertical motion and subsequent condensation-latent heating from the model microphysics;no warm bubbles are used to start or trigger the storm. The model is able to well simulate measured precipitation both in terms of total precipitation and rain intensity. Also the position of the major spell is acceptable

    Quantitative precipitation forecast of the Soverato flood: The role of orography and surface fluxes

    Get PDF
    During the night between 9 and 10 September 2000 a strong flood occurred in Soverato, a small town of Ionian coast of Calabria, killing 13 people. This was the top of an intense precipitation event occurred over the region during 8th, 9th, 10th September. In this paper the study of this event is performed, both analysing the synoptical aspects and using a numerical meteorological model either to reproduce the precipitation fields or to highlight some mesoscale features that determined the very intense and abundant rainfall. After a short description of the case study and presentation of measured rainfall fields, simulations are discussed. The study is based on three numerical simulations performed using the CSU-RAMS model (Regional mesoscale Modeling System) developed at Colorado State University and daily used at Crati Scrl to produce weather forecasts over Calabria peninsula. The first run is the control case and assesses the model ability to reproduce the flood cumulated rainfall by comparison with rain gauge data collected by the “Istituto Idrografico e Mareografico-Dipartimento di Catanzaro”. Second simulation is made to assess the influence of orographic barriers on the precipitation field, while third simulation evaluates the sensitivity to latent and sensible heat fluxes. Results indicate that the model simulate in satisfactory way the location and amount of rainfall, even if some problems are open and require more investigations
    corecore