10,034 research outputs found

    A new bound of the ℒ2[0, T]-induced norm and applications to model reduction

    Get PDF
    We present a simple bound on the finite horizon ℒ2/[0, T]-induced norm of a linear time-invariant (LTI), not necessarily stable system which can be efficiently computed by calculating the ℋ∞ norm of a shifted version of the original operator. As an application, we show how to use this bound to perform model reduction of unstable systems over a finite horizon. The technique is illustrated with a non-trivial physical example relevant to the appearance of time-irreversible phenomena in statistical physics

    A complete family of separability criteria

    Get PDF
    We introduce a new family of separability criteria that are based on the existence of extensions of a bipartite quantum state ρ\rho to a larger number of parties satisfying certain symmetry properties. It can be easily shown that all separable states have the required extensions, so the non-existence of such an extension for a particular state implies that the state is entangled. One of the main advantages of this approach is that searching for the extension can be cast as a convex optimization problem known as a semidefinite program (SDP). Whenever an extension does not exist, the dual optimization constructs an explicit entanglement witness for the particular state. These separability tests can be ordered in a hierarchical structure whose first step corresponds to the well-known Positive Partial Transpose (Peres-Horodecki) criterion, and each test in the hierarchy is at least as powerful as the preceding one. This hierarchy is complete, in the sense that any entangled state is guaranteed to fail a test at some finite point in the hierarchy, thus showing it is entangled. The entanglement witnesses corresponding to each step of the hierarchy have well-defined and very interesting algebraic properties that in turn allow for a characterization of the interior of the set of positive maps. Coupled with some recent results on the computational complexity of the separability problem, which has been shown to be NP-hard, this hierarchy of tests gives a complete and also computationally and theoretically appealing characterization of mixed bipartite entangled states.Comment: 21 pages. Expanded introduction. References added, typos corrected. Accepted for publication in Physical Review

    Population inversion of driven two-level systems in a structureless bath

    Get PDF
    We derive a master equation for a driven double-dot damped by an unstructured phonon bath, and calculate the spectral density. We find that bath mediated photon absorption is important at relatively strong driving, and may even dominate the dynamics, inducing population inversion of the double dot system. This phenomenon is consistent with recent experimental observations.Comment: 4 Pages, Added Reference [30] to Dykman, 1979, available at http://www.pa.msu.edu/people/dykman/pub/Sov.J.LowTemp.Phys_5.pd

    Network Synthesis of Linear Dynamical Quantum Stochastic Systems

    Get PDF
    The purpose of this paper is to develop a synthesis theory for linear dynamical quantum stochastic systems that are encountered in linear quantum optics and in phenomenological models of linear quantum circuits. In particular, such a theory will enable the systematic realization of coherent/fully quantum linear stochastic controllers for quantum control, amongst other potential applications. We show how general linear dynamical quantum stochastic systems can be constructed by assembling an appropriate interconnection of one degree of freedom open quantum harmonic oscillators and, in the quantum optics setting, discuss how such a network of oscillators can be approximately synthesized or implemented in a systematic way from some linear and non-linear quantum optical elements. An example is also provided to illustrate the theory.Comment: Revised and corrected version, published in SIAM Journal on Control and Optimization, 200

    Optimal tracking for pairs of qubit states

    Get PDF
    In classical control theory, tracking refers to the ability to perform measurements and feedback on a classical system in order to enforce some desired dynamics. In this paper we investigate a simple version of quantum tracking, namely, we look at how to optimally transform the state of a single qubit into a given target state, when the system can be prepared in two different ways, and the target state depends on the choice of preparation. We propose a tracking strategy that is proved to be optimal for any input and target states. Applications in the context of state discrimination, state purification, state stabilization and state-dependent quantum cloning are presented, where existing optimality results are recovered and extended.Comment: 15 pages, 8 figures. Extensive revision of text, optimality results extended, other physical applications include

    Semiclassical theory of cavity-assisted atom cooling

    Get PDF
    We present a systematic semiclassical model for the simulation of the dynamics of a single two-level atom strongly coupled to a driven high-finesse optical cavity. From the Fokker-Planck equation of the combined atom-field Wigner function we derive stochastic differential equations for the atomic motion and the cavity field. The corresponding noise sources exhibit strong correlations between the atomic momentum fluctuations and the noise in the phase quadrature of the cavity field. The model provides an effective tool to investigate localisation effects as well as cooling and trapping times. In addition, we can continuously study the transition from a few photon quantum field to the classical limit of a large coherent field amplitude.Comment: 10 pages, 8 figure

    Arkansas Cotton Variety Test 2004

    Get PDF
    The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant

    Applying matrix product operators to model systems with long-range interactions

    Get PDF
    An algorithm is presented which computes a translationally invariant matrix product state approximation of the ground state of an infinite 1D system; it does this by embedding sites into an approximation of the infinite ``environment'' of the chain, allowing the sites to relax, and then merging them with the environment in order to refine the approximation. By making use of matrix product operators, our approach is able to directly model any long-range interaction that can be systematically approximated by a series of decaying exponentials. We apply our techniques to compute the ground state of the Haldane-Shastry model and present results.Comment: 7 pages, 3 figures; manuscript has been expanded and restructured in order to improve presentation of the algorith

    Study of radiation hazards to man on extended near earth missions

    Get PDF
    Radiation hazards to man on extended near earth mission

    Comparing Experiments to the Fault-Tolerance Threshold

    Full text link
    Achieving error rates that meet or exceed the fault-tolerance threshold is a central goal for quantum computing experiments, and measuring these error rates using randomized benchmarking is now routine. However, direct comparison between measured error rates and thresholds is complicated by the fact that benchmarking estimates average error rates while thresholds reflect worst-case behavior when a gate is used as part of a large computation. These two measures of error can differ by orders of magnitude in the regime of interest. Here we facilitate comparison between the experimentally accessible average error rates and the worst-case quantities that arise in current threshold theorems by deriving relations between the two for a variety of physical noise sources. Our results indicate that it is coherent errors that lead to an enormous mismatch between average and worst case, and we quantify how well these errors must be controlled to ensure fair comparison between average error probabilities and fault-tolerance thresholds.Comment: 5 pages, 2 figures, 13 page appendi
    • 

    corecore