216,532 research outputs found

    Sensor networks security based on sensitive robots agents. A conceptual model

    Full text link
    Multi-agent systems are currently applied to solve complex problems. The security of networks is an eloquent example of a complex and difficult problem. A new model-concept Hybrid Sensitive Robot Metaheuristic for Intrusion Detection is introduced in the current paper. The proposed technique could be used with machine learning based intrusion detection techniques. The new model uses the reaction of virtual sensitive robots to different stigmergic variables in order to keep the tracks of the intruders when securing a sensor network.Comment: 5 page

    Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100)

    Get PDF
    Epitaxial FeRh(100) films (CsCl structure, 10 ML \sim 10\ ML\ thick), prepared {\it in-situ} on a W(100) single crystal substrate, have been investigated via valence band and core level photoemission. The presence of the temperature-induced, first-order, antiferromagnetic to ferromagnetic (AF\rightarrow FM) transition in these films has been verified via linear dichroism in photoemission from the Fe 3pp levels. Core level spectra indicate a large moment on the Fe atom, practically unchanged in the FM and AF phases. Judging from the valence band spectra, the metamagnetic transition takes place without substantial modification of the electronic structure. In the FM phase, the spin-resolved spectra compare satisfactorily to the calculated spin-polarized bulk band structure.Comment: 7 pages, 5 figure

    Evidence for an incommensurate magnetic resonance in La(2-x)Sr(x)CuO(4)

    Full text link
    We study the effect of a magnetic field (applied along the c-axis) on the low-energy, incommensurate magnetic fluctuations in superconducting La(1.82)Sr(0.18)CuO(4). The incommensurate peaks at 9 meV, which in zero-field were previously shown to sharpen in q on cooling below T_c [T. E. Mason et al., Phys. Rev. Lett. 77, 1604 (1996)], are found to broaden in q when a field of 10 T is applied. The applied field also causes scattered intensity to shift into the spin gap. We point out that the response at 9 meV, though occurring at incommensurate wave vectors, is comparable to the commensurate magnetic resonance observed at higher energies in other cuprate superconductors.Comment: 8 pages, including 4 figure

    Study of the Fully Frustrated Clock Model using the Wang-Landau Algorithm

    Full text link
    Monte Carlo simulations using the newly proposed Wang-Landau algorithm together with the broad histogram relation are performed to study the antiferromagnetic six-state clock model on the triangular lattice, which is fully frustrated. We confirm the existence of the magnetic ordering belonging to the Kosterlitz-Thouless (KT) type phase transition followed by the chiral ordering which occurs at slightly higher temperature. We also observe the lower temperature phase transition of KT type due to the discrete symmetry of the clock model. By using finite-size scaling analysis, the higher KT temperature T2T_2 and the chiral critical temperature TcT_c are respectively estimated as T2=0.5154(8)T_2=0.5154(8) and Tc=0.5194(4)T_c=0.5194(4). The results are in favor of the double transition scenario. The lower KT temperature is estimated as T1=0.496(2)T_1=0.496(2). Two decay exponents of KT transitions corresponding to higher and lower temperatures are respectively estimated as η2=0.25(1)\eta_2=0.25(1) and η1=0.13(1)\eta_1=0.13(1), which suggests that the exponents associated with the KT transitions are universal even for the frustrated model.Comment: 7 pages including 9 eps figures, RevTeX, to appear in J. Phys.

    Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires

    Full text link
    We report measurements of electronic, thermoelectric, and galvanomagnetic properties of individual single crystal antimony telluride (Sb2Te3) nanowires with diameters in the range of 20-100 nm. Temperature dependent resistivity and thermoelectric power (TEP) measurements indicate hole dominant diffusive thermoelectric generation, with an enhancement of the TEP for smaller diameter wires up to 110 uV/K at T = 300 K. We measure the magnetoresistance, in magnetic fields both parallel and perpendicular to the nanowire [110] axis, where strong anisotropic positive magnetoresistance behavior was observed

    Phase Transitions in the Symmetric Kondo Lattice Model in Two and Three Dimensions

    Full text link
    We present an application of high-order series expansion in the coupling constants for the ground state properties of correlated lattice fermion systems. Expansions have been generated up to order (t/J)14(t/J)^{14} for d=1d=1 and (t/J)8(t/J)^8 for d=2, 3d=2,\ 3 for certain properties of the symmetric Kondo lattice model. Analyzing the susceptibility series, we find evidence for a continuous phase transition from the ``spin liquid'' phase characteristic of a ``Kondo Insulator'' to an antiferromagnetically ordered phase in dimensions d2d\ge2 as the antiferromagnetic Kondo coupling is decreased. The critical point is estimated to be at (t/J)c0.7(t/J)_c\approx0.7 for square lattice and (t/J)c0.5(t/J)_c\approx0.5 for simple-cubic lattice.Comment: 12 pages, Revtex, replace previous corrupted fil

    Causality Problem in a Holographic Dark Energy Model

    Full text link
    In the model of holographic dark energy, there is a notorious problem of circular reasoning between the introduction of future event horizon and the accelerating expansion of the universe. We examine the problem after dividing into two parts, the causality problem of the equation of motion and the circular logic on the use of the future event horizon. We specify and isolate the root of the problem from causal equation of motion as a boundary condition, which can be determined from the initial data of the universe. We show that there is no violation of causality if it is defined appropriately and the circular logic problem can be reduced to an initial value problem.Comment: 5 page

    Chandra Observations of the X-ray Narrow-Line Region in NGC 4151

    Get PDF
    We present the first high-resolution X-ray spectrum of the Seyfert 1.5 galaxy NGC 4151. Observations with the Chandra High Energy Transmission Grating Spectrometer reveal a spectrum dominated by narrow emission lines from a spatially resolved (1.6 kpc), highly ionized nebula. The X-ray narrow-line region is composite, consisting of both photoionized and collisionally ionized components. The X-ray emission lines have similar velocities, widths, and spatial extent to the optical emission lines, showing that they arise in the same region. The clouds in the narrow-line region must contain a large range of ionization states in order to explain both the optical and X-ray photoionized emission. Chandra data give the first direct evidence of X-ray line emission from a hot plasma (T~1e7 K) which may provide pressure confinement for the cooler (T=3e4 K) photoionized clouds.Comment: 13 pages, 3 figures, to be published in Astrophysical Journal Letter
    corecore