22,170 research outputs found

    New Experimental Limit on the Electric Dipole Moment of the Electron in a Paramagnetic Insulator

    Full text link
    We report results of an experimental search for the intrinsic Electric Dipole Moment (EDM) of the electron using a solid-state technique. The experiment employs a paramagnetic, insulating gadolinium gallium garnet (GGG) that has a large magnetic response at low temperatures. The presence of the eEDM would lead to a small but non-zero magnetization as the GGG sample is subject to a strong electric field. We search for the resulting Stark-induced magnetization with a sensitive magnetometer. Recent progress on the suppression of several sources of background allows the experiment to run free of spurious signals at the level of the statistical uncertainties. We report our first limit on the eEDM of (5.57±7.98±0.12)×(-5.57 \pm 7.98 \pm 0.12)\times1025^{-25}e\cdotcm with 5 days of data averaging.Comment: 9 pages, 9 figures, Revtex 4.

    Using Muonic Hydrogen in Optical Spectroscopy Experiment to Detect Extra Dimensions

    Full text link
    Considering that gravitational force might deviate from Newton's inverse-square law (ISL) and become much stronger in small scale, we propose a kind of optical spectroscopy experiment to detect this possible deviation and take electronic, muonic and tauonic hydrogen atoms as examples. This experiment might be used to indirectly detect the deviation of ISL down to nanometer scale and to explore the possibility of three extra dimensions in ADD's model, while current direct gravity tests cannot break through micron scale and go beyond two extra dimensions scenario.Comment: 9 pages, 2 figures. To appear in IJT

    Subwavelength broadband sound absorber based on a composite metasurface.

    Full text link
    Suppressing broadband low-frequency sound has great scientific and engineering significance. However, normal porous acoustic materials backed by a rigid wall cannot really play its deserved role on low-frequency sound absorption. Here, we demonstrate that an ultrathin sponge coating can achieve high-efficiency absorptions if backed by a metasurface with moderate surface impedance. Such a metasurface is constructed in a wide frequency range by integrating three types of coiled space resonators. By coupling an ultrathin sponge coating with the designed metasurface, a deep-subwavelength broadband absorber with high absorptivity ([Formula: see text]) exceeding one octave from  185 Hz to  385 Hz (with wavelength [Formula: see text] from 17.7 to 8.5 times of thickness of the absorber) has been demonstrated theoretically and experimentally. The construction mechanism is analyzed via coupled mode theory. The study provides a practical way in constructing broadband low-frequency sound absorber

    BB-to-Glueball form factor and Glueball production in BB decays

    Full text link
    We investigate transition form factors of BB meson decays into a scalar glueball in the light-cone formalism. Compared with form factors of BB to ordinary scalar mesons, the BB-to-glueball form factors have the same power in the expansion of 1/mB1/m_B. Taking into account the leading twist light-cone distribution amplitude, we find that they are numerically smaller than those form factors of BB to ordinary scalar mesons. Semileptonic BGlνˉB\to Gl\bar\nu, BGl+lB\to Gl^+l^- and BsGl+lB_s\to Gl^+l^- decays are subsequently investigated. We also analyze the production rates of scalar mesons in semileptonic BB decays in the presence of mixing between scalar qˉq\bar qq and glueball states. The glueball production in BcB_c meson decays is also investigated and the LHCb experiment may discover this channel. The sizable branching fraction in Bc(π+π)lνˉB_c\to (\pi^+\pi^-)l^-\bar\nu, Bc(K+K)lνˉB_c\to (K^+K^-)l^-\bar\nu or Bc(π+ππ+π)lνˉB_c\to (\pi^+\pi^-\pi^+\pi^-)l^-\bar\nu could be a clear signal for a scalar glueball state.Comment: 17 pages, 3 figure, revtex

    X-ray Emission of Baryonic Gas in the Universe: Luminosity-Temperature Relationship and Soft-Band Background

    Full text link
    We study the X-ray emission of baryon fluid in the universe using the WIGEON cosmological hydrodynamic simulations. It has been revealed that cosmic baryon fluid in the nonlinear regime behaves like Burgers turbulence, i.e. the fluid field consists of shocks. Like turbulence in incompressible fluid, the Burgers turbulence plays an important role in converting the kinetic energy of the fluid to thermal energy and heats the gas. We show that the simulation sample of the Λ\LambdaCDM model without adding extra heating sources can fit well the observed distributions of X-ray luminosity versus temperature (LxL_{\rm x} vs. TT) of galaxy groups and is also consistent with the distributions of X-ray luminosity versus velocity dispersion (LxL_{\rm x} vs. σ\sigma). Because the baryonic gas is multiphase, the LxTL_{\rm x}-T and LxσL_{\rm x}-\sigma distributions are significantly scattered. If we describe the relationships by power laws LxTαLTL_{\rm x}\propto T^{\alpha_{LT}} and LxσαLVL_{\rm x}\propto \sigma^{\alpha_{LV}}, we find αLT>2.5\alpha_{LT}>2.5 and αLV>2.1\alpha_{LV}>2.1. The X-ray background in the soft 0.520.5-2 keV band emitted by the baryonic gas in the temperature range 105<T<10710^5<T<10^7 K has also been calculated. We show that of the total background, (1) no more than 2% comes from the region with temperature less than 106.510^{6.5} K, and (2) no more than 7% is from the region of dark matter with mass density ρdm<50ρˉdm\rho_{\rm dm}<50 \bar{\rho}_{\rm dm}. The region of ρdm>50ρˉdm\rho_{\rm dm}>50\bar{\rho}_{\rm dm} is generally clustered and discretely distributed. Therefore, almost all of the soft X-ray background comes from clustered sources, and the contribution from truly diffuse gas is probably negligible. This point agrees with current X-ray observations.Comment: 32 pages including 14 figures and 2 tables. Final version for publication in Ap

    High-Pressure Induced Structural Phase Transition in CaCrO4: Evidence from Raman Scattering Studies

    Full text link
    Raman spectroscopic studies have been carried out on CaCrO4 under pressure up to 26GPa at ambient temperature. The Raman spectra showed CaCrO4 experienced a continuous structural phase transition started at near 6GPa, and finished at about 10GPa. It is found that the high-pressure phase could be quenched to ambient conditions. Pressure dependence of the Raman peaks suggested there existed four pressure regions related to different structural characters. We discussed these characters and inferred that the nonreversible structural transition in CaCrO4, most likely was from a zircon-type (I41/amd) ambient phase to a scheelite-type high pressure structure (I41/a).Comment: submitte
    corecore